
NASA Contractor Report’ 3%4 

Numerical Method for Predicting 
Flow Characteristics and Performance 
of .Nonaxisymmetric Nozzles 

Part 2 - Applications 

P. D. Thomas 

CONTRACT NAS 1-l 5084 
OCTOBER 1980 

MSA 



NASA Contractor Report 3264 

Numerical Method for Predicting 
Flow Characteristics and Performance 
of Nonaxisymmetric Nozzles 

Part 2 - Applications 

P. D. Thomas 

Lockheed Missiles and Space Conzpauy, Im. 
Palo Alto, California 

Prepared for 
Langley Research Center 
under Contract NASl-15084 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Branch 

1980 



---- -.. .- 



CONTENTS 

Section -__ Page 

1 INTRODUCTION ................................................. 1 

2 MODIFICATIONS TO THE NUMERICAL METHOD ........................ 3 

2.1 Brief Outline of the Original Formulation ............... 3 

2.2 Modified Formulation of the Implicit Algorithm .......... 7 

2.3 Modified Scheme for Subsonic Inflow and Outflow 
Boundary Conditions ..................................... 12 

2.3.1 Inflow Boundary Points ........................... 12 

2.3.2 Outflow Boundary Points .......................... I2 

2.4 Implicit Dissipation .................................... I3 

2.5 Improved Numerical Grid Generation Technique ............ I6 

3 EVALUATION OF NOZZLE THRUST AND DISCHARGE COEFFICIENT ........ 23 

3.1 Thrust .................................................. 23 

3.2 Discharge Coefficient ................................... 27 

4 FINAL FORMULATION OF TURBULENCE MODELS ....................... 29 

4.1 Two-Dimensional and Axisymmetric Flows .................. 30 

4.1.1 Wall Boundary Layers ............................. 32 

4.1.2 Wakes ............................................ 36 

4.1.3 Mixing Layers and Fully-Developed Jet Region ..... 38 

4.2 General Three-Dimensional Flows ......................... 40 

5 NUMERICAL EXPERIMENTS ........................................ 43 

5.1 

5.2 

5.3 

5.4 

5.5 

Computation of Separated Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

Effect of Implicit Boundary Conditions and Time 
Stepsize on the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

5.2.1 Implicit Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 51 

5.2.2 Time Stepsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Effect of Artificial Explicit Smoothing on the Solution . . 62 

Effect of Artificial Implicit Dissipation on 
Stability and Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

iii 



Section Page 

6 NOZZLE FLOWFIELD PREDICTIONS AND COMPARISON WITH 
EXPERIMENTAL DATA ,..,.~..,...,.,,........................... 73 

6.1 Internal Flow in a "Two-Dimensional" Converging- 
Diverging Nozzle ,.................................-.... 73 

6.1.1 Configuration, Operating Conditions, and 
Computational Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

6.1.2 Two-Dimensional Flow Results . . . . . . . . . . . . . . . . . . . . . 79 

6.1.3 Three-Dimensional Flow Results . . . . . . . . . . . . . . . . . . . 91 

6.2 Internal and External Flowfield of a Circular Nozzle . . . . 98 

6.2.1 Configuration, Operating Conditions, and 
Computational Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

6.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...104 

7 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...113 

iv 



Section 1 

INTRODUCTION 

This report summarizes work performed during the second phase of an effort to 

develop a computer-implemented numerical method for predicting the flow charac- 

teristics and performance of three-dimensional jet engine exhaust nozzles. The 

objective of developing a method for computing the internal and external viscous 

flowfield of an isolated nozzle has been met. The approach is based on using 

an implicit numerical method to solve the unsteady Navier-Stokes equations in 

a boundary-conforming curvilinear coordinate system to obtain the desired time- 

asymptotic steady state solution. Flow turbulence effects are simulated by 

means of algebraic turbulence models for the effective turbulent eddy viscosity 

and Prandtl number. A detailed description of the equations and boundary con- 

ditions and of the numerical method have been presented in an earlier report 

[Ref. 11, along with a general discussion of turbulence models appropriate to 

the various sub-regions of the nozzle flowfield. 

The present final report describes work performed since Reference 1 was written. 

Recent modifications and improvements to the original numerical algorithm are 

presented in Section 2. Section 3 gives the equations that are used to derive 

the nozzle performance parameters such as thrust and discharge coefficient 

from the computed flowfield data. The final formulation of the turbulence 

models that are used to simulate flow turbulence effects is presented in 

Section 4. Section 5 presents the results of numerical experiments performed 

to explore the effect that various parameters in the numerical method have on 

both the rate of convergence to steady state and on the final flowfield solu- 

tion. Detailed flowfield predictions for several three-dimensional nozzle con- 

figurations are presented in Section 6 and compared with experimental wind 

tunnel data. 

The numerical method is embodied in a set of three computer codes: RGRIDD, 

NOZLIC, and NOZL3D. The RGRIDD code constructs the curvilinear coordinate 



system and computational grid numerically for nozzles of complex geometric 

configuration. The NOZLIC code generates a set of flowfield initial condi- 

tions on this grid that are used to start a flow computation. The NOZL3D 

code performs the actual flowfield computation and evaluates the nozzle per- 

formance characteristics. A user's guide to the operation of these three 

codes is contained in a separate volume [Ref. 81. 

In the sections that follow, all equations are cast in dimensionless form. 

Distances are referred to a reference length, velocities are referred to the 

speed of sound at some reference state, viscosity 1-1 is referred to the 

molecular viscosity at the reference state, and individual state variables 

such as density p, pressure p, and temperature T are referred to their 

values at the reference state. The reference state is that at which the 

Reynolds number Re is defined in terms of the reference length using the 

reference sound speed as the characteristic velocity. 



Section 2 

MODIFICATIONS TO THE NUMERICAL METHOD 

2.1 BRIEF OUTLINE OF THE ORIGINAL FORMULATION 

The original formulation of the numerical method [Ref. 1] starts with the 

strong conservation-law form of unsteady Navier-Stokes equations in a Cartesian 

base coordinate system (xy z). The equations are transformed to a boundary- 

conforming curvilinear coordinate system (s,n,<), and take the non-dimensional 

form 

iq + it; + ijn + i+i 
5 

= Re-'(^en + ir; ) (2.1) 

where ;I = J; (2.2) 

J is the Jacobian of the inverse transformation 

J = a(x,y,z)/a(~,n,c) (2.3) 

q is a vector of conserved variables whose components are the density, the 

three Cartesian components of the momentum flux vector p;, and the total 

energy per unit volume, i, g, and h are inviscid flux vectors; and the terms 

on the R.H.S. of Eq. (2.1) that are inversely proportional to the Reynolds 

number Re represent viscous transport processes. Each of the inviscid flux 

vectors is a linear combination of the flux vectors ?, 6, 6 associated with 

the Cartesian coordinate direction x, y, z, respectively. The coefficients 

of these linear combinations are the metrics of the coordinate transformations 

E(x*Y,z,t) 3 n(x,Y,z,t) 3 s(x,y,z,t). For example, 

ix = J E, = Y, zs - y< zn 

iy = J sy = z,~ xc - zs x0 

etc. 
3 



The non-dimensional flow variable vector 5 and the inviscid flux vectors 
+ -t -f 
f, g, h are defined as follows in terms of the Cartesian components u, v, w, 

the density p, the pressure p, and the total energy per unit volume E: 

5 = (P, PU, PV, PW, SIT 

; = [pu, p'+ PU2, puv, puw, u(p' + e)lT 

; = [pv, pvu, p’+ PV2, PVW¶ v(p' + EHT 
-+ 
h = [pw, pwu, PWV, P’+ PW2, W(P’ + E)lT 

where p' = p/v and y is the specific heat ratio. 

Similarly, each of the viscous terms i, i is a linear combination of the 

viscous terms associated with each of the Cartesian coordinate directions. The 

reader is referred to Section 2 of Reference 1 for the mathematical equations 

that define the viscous terms. We note only that Eq. (2.1) represents the 

parabolic approximation to the Navier-Stokes equations wherein viscous terms 

associated with the streamise coordinate 5 are neglected. 

To solve Equation (2.1), the transformed space (e. n, K) is covered by a 

uniform grid (sj, nk, i;,) such that peripheral grid points lie on the bound- 

aries of the space. The spatially differenced form of the equations is derived 

to second order accuracy in the mesh spacings AE, An, A5 by means of the 

Finite-Volume Method. To each interior grid point of the transformed space 

there corresponds a cell of volume AV = AC ATI A5 that encloses the point. 

The difference equations that apply at the point are derived by integrating 

Eq. (2.1) over the cell volume. This leads to difference equations of the form 

(2.4a) 

AV = A< Aq As (2.4b) 



where the viscous terms have been suppressed for brevity, and where n. 6. 
J J 

is the centered spatial differential operator for the cj direction 

~j "j ~ = (fj+l k R - 'j-1 k ,)/2 
, , , 3 (2.5) 

and the central difference operators for the k and R directions are defined 

similarly. 

Within the second order spatial accuracy of the remaining terms, the volume 

integral that appears in the first term of Eq. (2.4) may be represented in 

terms of the cell-averaged value 

6jk!z 
= (*v)-' 

s 
;r ck dn ds 

Av 
(2.6) 

which is centered at the grid point jka itself since the grid point is located 

at the centroid of the cell that surrounds the point. 

The final implicit space-time difference equations that govern the change 
An+1 A;I = q _ ;I" over a time Step AT = T n+l _ =n are obtained by evaluating 

the spatially differentiated terms at the advanced time T 
n+l 

, performing a 

first-order Taylor series expansion about the solution at time -cn, and 

factoring the implicit operator. This yields the implicit AD1 sequence 

(I + AT pj 6j i)” Aq -**--[pj “j T + pk cTk i + j.19, Isk ii,” AT +... (2.7a) 

A 
(I + AT u’k “k G +... )” A;l* = A{** (2.7b) - 

,. A --* 
(I + AT pR 6& H + . . .)" Aq = Aq (2.7~) 

,. . ,. 
where F, G, H are Jacobian matrices 

(2.7d) 

5 

--.---- .~- 

‘., 
.‘, 



and where the viscous terms again have been suppressed for brevity. Each step 

of the ADI sequence in Eq. (2.7) involves solving a block-tridiagonal linear 

system of equations to obtain the solution at interior grid points. 

For grid points located on the boundaries of the computational space s,n,s, 

one or more of the five scalar components of Eq. (2.1) are replaced by algebraic 

boundary conditions. If the latter are nonlinear in time, they are linearized 

by a first-order Taylor series expansion about the solution 5". This yields a 

linear algebraic subsystem of the form 

M” ;1 = Tt;” (2.8) 

The remaining scalar components of Eq. (2.1) (i.e., those scalar flow equations 

that have not been replaced by the aforementioned algebraic boundary conditions) 

are differenced by applying the finite-volume method in the same way as des- 

cribed above for interior points. However, to a typical boundary point such 

as j=l, there corresponds not a full cell, but rather a half-cell whose 

width in the coordinate direction normal to the boundary is only half the width 

A< of an interior cell. The counterpart of Equations (2.4) take the form 

d 
?I7 J 

h 
;I de dn d< + Aj F + uk 6k g + p'9. A, { = -. * , j = 1 (2.9a) 

AV 

AV = (Ac/2) An A< (2.9b) 

where A. 
J 

is the forward difference operator such that A. = fj+, - f.. The 
J J 

volume integral in the first term of Eq. (2.9a) still may be represented in 

terms of the value 4, at the cell centroid 

;I, = (Av)-’ 
/ 

;I dc. dn ds (2.10) 

Av 

but the centroid is not located at the boundary grid point j = 1. However, 

within-the spatial order of accuracy of Eq. (2.9), the value 4, may be 

6 
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evaluated by linear interpolation between the boundary point j = 1 and the 

adjacent interior point j = 2. 

;1* = (I +gAj) ;I * j=l (2.11) 

where I is the identity operator. 

. 
Equation (2.9a) is time-differenced implicitly and linearized in the same way 

as is Eq. (2.4) for interior points. The appropriate scalar components of the 

resulting equation are replaced by the linearized algebraic boundary conditions 

(2.8) and the implicit operator is factored to obtain the counterpart of the 

sequence (2.7) that applies at boundary points. 

2.2 MODIFIED FORMULATION OF THE IMPLICIT ALGORITHM 

The original formulation of the algorithm as presented in Reference 1 and 

summarized in the preceding subsection has two deficiencies: (1) the algorithm 

is valid only if the curvilinear coordinate transformation has no singular 

points where the Jacobian J vanishes, and (2) unacceptably large truncation 

errors can arise at grid points situated along the lines of intersection be- 

tween boundary surfaces of the computational domain. 

As an example where a singular transformation arises, consider the internal _ 

flow in an axisymmetric nozzle whose axis of symmetry coincides with the 

Cartesian x axis, and whose interior wall is of radius r = r-w(x), 

O<X<L. - - The first quadrant of the flow region interior to the nozzle can 

be mapped onto a rectangular parallelepiped in a right-handed curvilinear 

coordinate system 5, n, r by the transformation 

5 = s(x), OlXlL 

11 = -e , 0 ( cl 2 s/2 

3 = 3(r) , 0 2 r 2 rw(x) 

(2.12) 

__ .-_ ..-^~_---- v-----r- T---~----i;*.< -__I- -- 

I ‘: 
. ., ,,,’ : ,, :,i : :‘- ,,, ‘,, : ,,. 

., ‘. I_...~_ -1 ,, 



where 8 = tan" y/z 

r= \ly2+ 

One can verify easily that the Jacobian J of this transformation vanishes 

at the axis of symmetry y = z = 0. The axis of symmetry maps onto the face 

3 = 0 of the parallelepiped in the transformed space 5, n, 3; hence, the 

transformation is singular at each point of that face. 

The numerical mapping technique presented in Section 3 of Reference 1 also can 

generate curvilinear coordinate systems that have isolated singularities. For 

example, the quasi-elliptical mapping depicted in Figs. 3-3 and 3-4 of 

Reference 1 has a singularity at the point A that corresponds to the focus 

of the ellipse. The quasi-rectangular mapping given in Fig. 3-6 of Ref. 1 

for the flow regions interior and exterior to a nozzle whose cross-section is 

super-elliptical also has singularities at the points of maximum curvature of 

the internal and external super-ellipses. 

The numerical algorithm can be modified to handle isolated singularities such 

as those in the foregoing examples. Two modifications are necessary: first, 

as dictated by the finite-volume method, the Jacobian J at any grid point that 

coincides with a coordinate singularity must be computed as a cell-averaged 

quantity; and, second, the AD1 sequence (2.7) must be modified to yield a?j 

directly, rather than A:, which involves the Jacobian as a factor. We shall 

deal with these modifications in order. 

In general, the flow variable vector ?$ is regular and non-zero even in the 

neighborhood of a coordinate singularity, whereas the compound quantity { in 

in Eq. (2.2) vanishes along with J at the singularity itself. Thus, Eq. (.2.6) 

is a valid representation of the volume integral that appears in the first term 

of Eq. (2.4a) only at grid points where the 5, n, 3 coordinate transformation 

is non-singular. At a singular point, the quantity q vanishes locally, 

whereas the volume integral is non-zero because it includes contributions from 

all regular points within the finite-volume cell that encloses the singular 

8 



point. Since < itself is regular, the volume 

evaluated by applying the mean value theorem 

(Ad / ~ dg dn d3 = djk~ J* 

AV. 
JkR 

integral in Eq. (2.4a) can be 

(2.13) 

where the cell-averaged Jacobian J, is given by 

J, = (AV)-’ J de dn dr; (2.14) 

The latter is always non-zero for any cell of finite volume AV. If the singu- 

larity coincides with an interior grid point, then the integral in Eq. (2.14) 

can be evaluated analytically to second-order accuracy by introducing a local 

Taylor series expansion for the function J( 5, n, 6). If the singularity 

coincides with a boundary grid point, say j = 1, then the counterpart of 

Eq. (2.13) is 

(AV)-’ 
/ 

;; & dn dr; = 6, J* (2.15) 

AV 

where both ;* and J, represent cell-averaged values at the cell centroid, 

and can be computed individually by linear interpolation between the boundary 

point and the adjacent interior point (cf. Eq. (2.11)). 

The alterations necessary to permit the direct computation of A;f from the 

algorithm are merely a special case of the alterations that permit the use of 

grids that move as a function of time (Ref. 2). One need only expand the term 

4 as follows 

A; = 6” AJ + Jntl A; 

and redefine the Jacobian matrices in Eq. (2.7d) as 



Upon factoring the implicit operator in the implicitly time-differenced and 

linearized version of Eq. (2.4a), one obtains the AD1 sequence 

(J 

ntl 1 t AT ~j “j ~“)A~** = -6” AJ -(~j “j ” n 'k "k g 
(2.16a) 

+pR 611 6) AT + . . . 

(J 
n+l 1 + AT pk Ak iN + . ..) A; 

* 
= Jn+l + *x 

A4 (2.16b) 

(J 
‘+’ 1 -t AT pE 61? in + . . . ) A; = J n+l A$* (2.16~) 

where AJ = 0 and J n+l = J” if the grid is stationary in time, i.e., if the 

transformation (x,y,z)-t(c, n, r) is independent of time. 

It is important to note that the form given in Eq. (2.8) must be retained when 

applying algebraic boundary conditions at boundary grid points, or the values 
+** 

of Aq and of A:* at boundary points will become inconsistent with those 

at interior points where Eqs. (2.16) are employed. That is, for a stationary 

grid, the boundary conditions must be written as 

J M" A; = iii” (2.17) 

The modified algorithm given in Eqs. (2.16) and (2.17) should be valid at grid 

points that coincide with coordinate singularities as well as at regular points. 

However, numerical experiments for axisymmetric flow yield poor numerical re- 

sults for the flow variables at grid points situated along the singular axis 

of symmetry, although the solution is accurate at all other points. We con- 

jecture that the poor results at the symmetry axis result from a locally large 

truncation error, inasmuch as care was taken to incorporate the symmetry pro- 

perties of the flow variables and of the Cartesian coordinates into the computa- 

tion of the metrics and of the explicit fourth order smoothing terms in the 

10 



* 
neighborhood of the axis. To obtain an accurate solution at points on the 

axis, we have found it necessary to employ a time-lagging approach in which 

the flow variables at axis points are extrapolated from those at adjacent 

points following each time step. Even functions such as the temperature, 

density, and axial velocity componentareextrapolated from those at the two 

adjacent interior points using a second degree polynomial whose gradient is 

zero at the axis, and odd functions such as the transverse velocity components 

are set to zero at the axis. 

Locally large truncation errors also are incurred at other types of coordinate 

singularity, as well as exceptional but non-singular points of the curvilinear 

coordinate system. Examples of the latter are grid points that lie along the 

curves of intersection between two families of coordinate surface n = const. 

and r = const. that represent nozzle wall boundaries, such as the interior or 

exterior corner of a so-called "two-dimensional" nozzle that has flat walls 

and a rectangular cross-section. Such a corner point has the characteristic 

feature that the finite-volume cell associated with the point is either a 

quarter-cell (interior corner) or a three-quarter-cell (exterior corner). To 

avoid large numerical inaccuracies at such exceptional points, we have employed 

a time-lagging approach similar to that outlined above for singular points of 

an axisymmetric flow. For example, at axial corners where two walls intersect, 

we merely interpolate the temperature and density from the nearest neighboring 

wall points at 'the end of each time step. 

* When the Cartesian x-axis coincides with the flowfield axis of synnnetry, 
the coordinates y, z and their associated velocity components, v, w 
are odd functions of position relative to the axis, whereas x and all 

other flow variables are even functions. 

11 



2.3 MODIFIED SCHEME FOR SUBSONIC INFLOW AND OUTFLOW BOUNDARY CONDITIONS 

2.3.1 Inflow Boundary Points 

The scheme outlined in Section 4.2.2 of Reference 1 has been modified slightly 

to avoid an obvious inconsistency at inflow boundary grid points that lie on 

the nozzle walls. In the original inflow boundary scheme, four algebraic 

boundary conditions are applied that specify the total pressure, the total 

temperature, and the two direction cosines of the velocity vector. The fifth 

relation that is required to close the system of equations governing the five 

unknown components of the flow variable vector ;f is obtained from an implicit 

finite-volume discretization of the mass conservation equation (the first 

scalar component of Eq. (2.1)). This use of the mass conservation equation 

to determine the density is invalid at wall points because it is inconsistent 

with the density that is implied by the total pressure and total temperature 

through the equation of state. This follows from the fact that total and 

static temperatures are equal and total and static pressure are equal at wall 

points where the velocity vanishes. Thus, the algebraic boundary conditions 

alone are sufficient to determine the flow variables at wall points of the 

inflow boundary. Note, however, that when the temperature Tw specified as 

a boundary condition at nozzle walls, the inflow stagnation temperature boundary 

condition must be equal to T, at points where the walls intersect the inflow 

boundary. 

2.3.2 Outflow Boundary Points 

For cases where one is interested in computing only the flow internal to the 

nozzle, the outflow boundary is positioned at the nozzle exit plane. When the 

ambient pressure outside the nozzle is sufficiently high relative to the internal 

flow stagnation chamber pressure, the flow will be wholly subsonic at the exit 

plane, and the ambient pressure must be imposed as a boundary condition on the 

static pressure at the outflow boundary IRef. 1, Section 2.4.61. In the original 

implicit algorithm for outflow boundary grid points, this boundary condition is 

linearized and used in place of the u-momentum equation. However, this results 

12 



in an inconsistent set of equations for the flow variables at grid points 

located at the nozzle wall, where additional algebraic boundary conditions 

on the velocity components and on either the wall temperature or heat flux 

also are imposed. The inconsistency becomes apparent when one observes that, 

for an adiabatic wall, the continuity and energy equations determine the gas 

density and temperature at the wall. The corresponding wall pressure implied 

by the equation of state in general will be inconsistent with the boundary 

condition on the exit plane pressure. A similar inconsistency exists at wall 

points when the wall temperature is specified as a boundary condition. The 

inconsistency can be avoided by retaining the u-momentum equation at all out- 

flow boundary points, and using the imposed exit pressure boundary condition 

in place of the energy conservation equation. In addition, when the wall 

temperature Tw is specified as a boundary condition, the algebraic equation 

T = Tw is used in place of the continuity equation at wall points of the out- 

flow boundary. The physical justification for this procedure is that the gas 

density at the wall is determined completely by the exit pressure and wall 

temperature boundary conditions alone. 

2.4 IMPLICIT DISSIPATION 

The implicit algorithm permits the use of large time steps AT without numeri- 

cal instability, and makes it possible to attain the steady-state solution of 

Eq. (2.1) in fewer time steps than would an explicit algorithm. However, 

hundreds of time steps usually are required to achieve convergence to steady 

state. In an effort to speed convergence, we have introduced artificial 

dissipative terms into the implicit one-dimensional operators on the L.H.S. 

of 'Eqs. (2.16). These dissipative terms are similar to those employed by 

Steger [Ref. 31, except that they are differenced in a conservative fashion 

and obey homogeneous boundary conditions. This ensures that the dissipative 

terms do not alter the global conservation properties of the difference 

equations [Ref. 1, Section 4.41. 

The form of the dissipative term for the j coordinate direction is 

13 



, j=l 

, l<j<j 
max 

, ii = jmax 

(2.18) 

where u is a constant; E is the classical shift operator which is defined 

such that for any mesh function f., E?m f = f 

difference operator sjf = (Ei - 

Jacobian in Eq. (2.3). 

E;') :; 
j_+m ' 6 is the classical central 

and J is the transformation 

The central member of Eq. (2.18) applies at interior 

points, and the first and last members apply at boundary points that are not 

situated at flowfield symmetry planes. For such symmetry boundary points, the 

dissipative terms are modified to account for the symmetry properties of G 

and of J. With the addition of the dissipative term (2.18), the implicit 

operator on the left side of Eq. (2.16a) for interior points assumes the form 

(J n+l I + a “j J 
n+l 

“j I ’ A~ ~j “j F”) A~ = . . . 

Similar dissipative terms are added to the implicit operators in Eqs. (2.16b) 

and (2.16~) for the n and 5 coordinate directions. These dissipative terms 

do not affect the final steady state solution, because A; vanishes at steady 

state. Furthermore, they do not alter the unconditional numerical stability 

of the algorithm. 

The introduction of the implicit dissipative terms is equivalent to appending 

terms of the form 

(2.19) 

to the right side of the Navier-Stokes Equations (2.1). That is, a Taylor 

series expansion of Eq. (2.16) with the dissipative terms yields a modified 

partial differential equation which, to lowest order in AT, AE, An, Ar, is 

identical to Eq. (2.1) with three additional terms of the form (2.19), one 

for each coordinate direction. The steady state solution of the Navier-Stokes 

equations is unaffected by the additional terms because all time-derivative 

terms vanish at steady state. 

14 



Numerical experiments indicate that the artificial implicit dissipative terms 

have a favorable effect on the convergence rate when dissipation coefficient 

(r is of the order of unity (see Section 5.4). However, initial experimenta- 

tion with the dissipative terms displayed a tendency to produce oscillations in 

the spatial d i 

boundary. To 

mesh spacings 

flow variable 

stribution of computed flow variables across a subsonic inflow 

damp these oscillations, which have a wavelength of twice the 

An, A<, we have found it necessary to filter the computed 

distribution at the inflow plane following the second and third 

iona steps of the AD1 sequence (2.16) This is accomplished by the one-dimens 

low-pass filters 

where u denotes the classical central averaging operator 

1 

(2.20) 

pk = ?-,(+ + Ei”‘, 

Eqs. (2.20) apply only at interior points of the inflow plane. No filter is 

applied at the boundaries of the inflow plane unless those boundaries coincide 

with flowfield symmetry planes. For example, the intermediate solution A;* is 

not filtered over k at boundary points such as k = 1, kmax unless those points 

are located at symmetry planes, 

A;*= E; +pkA;*, 

in which case the appropriate filter is 

'where the plus sign applies at k = 1 and the minus sign applies 

at k = kmax. 

The described filters are applied only to the first, second, and fifth components 

of the flow variable vectors A; and A;*. The transverse momentum components 

Apv, Apw are recomputed from the filtered component Apu using the inflow 

boundary conditions on the direction cosines of the velocity vector (see Section 

2.3.1 above). 

15 



~(Y,,+(pyr,)-28Y,g+Y(Yn~+7JJYyg) = 0 (2.21a) 

a(Znrl+(Pzrl)-2B~lfy(Z55+~Z5) = 0 (2.21b) 

where 

c1 = y;+z; (2.22a) 

B = YqYz;+z& (2.22b) 

Y= y;+z; (2.22c) 

Equat ions (2.21) are solved numerically on a uniform, rectangular grid nk, 5~ 

nk = (k-1)An ,k = 1,2,... 

SE = (a-l)Ar ,R = 1,2,... 

to obtain the Cartesian coordinates (y,z) of the grid point in physical space 

that corresponds to each point (nk,<R) in the computational space. The boundary 

values for Eq's. (2.21) are the y,z coordinates of grid points on the boundaries 

of the flow region in the physical domain. These boundary grid points may be 

distributed unequally along the boundaries in any fashion. The parameters 

+I,$ in Eq's. (2.21) are evaluated locally at the boundaries in terms of the 

given boundary values (y,z) by using limiting forms of the elliptic equations. 

These parameters then are interpolated into the interior of the domain from the 

boundaries, and the elliptic system is solved numerically by a standard 

successive line over-relaxation technique. This results in a grid point 

distribution throughout the physical domain that is controlled entirely by the 

priori selection of the grid point distribution along the boundaries of that 

domain. 

2.5 IMPROVED NUMERICAL GRID GENERATION TECHNIQUE 

A general technique for generating a boundary-conforming curvilinear coordinate 

system <,n,s and computational grid suitable for geometrically complex nozzle 

configurations has been given in Section 3 of Reference 1. In this technique, 

a three-dimensional grid is built up by constructing a sequence of two-dimensional 

grids in successive cross-sectional planes S(x) = const. Within each such y-z 

cross-sectional plane, the transverse coordinate system T-I,< and computational 

grid is generated numerically as the solution to an elliptic boundary value 

problem governed by the following elliptic system of equations 
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The described procedure always yields a boundary-conforming transformation 

in which the boundaries of the flow region in the physical domain are coordinate 

curves n = const. or 5 = const. of the curvilinear coordinate system. In the 

original technique (Ref. 1, Section 3), the parameters cpand $ were evaluated 

from the boundary values using limiting forms of Eq's. (2.21) that were obtained 

by assuming that partial derivatives with respect to the curvilinear coordinate 

transverse to the boundary vanish locally at the boundary. For example, for a 

boundary c= const., the c-differentiated terms were dropped from Eq's. (2.21) 

to obtain the limiting forms 

hl +vyq = 0 (2.23a) 

zrln rl +'pz =o (2.23b) 

These equations then were used to evaluate the parameter cp locally at each grid 

point on the boundary in terms of the boundary values of y,z by replacing the 

differential operators by central difference operators 

(2.24b) 

To avoid locally large numerical errors at points where Iynl is small, Eq. (2.23a) 

was used only at points where Iyn1~1z,,l, whereas Eq. (2.23b) was used at points 

where 1~~ I< lz,, 1 (Ref. 1, Section 3). 

The described procedure for evaluating the parameters cp,$ from the boundary values 

was found to yield excellent computational grids for a variety of nozzle 

configurations. However, that procedure rests on a weak assumption, namely, that 

the derivatives in the direction transverse to the boundary can be dropped from 

the equations. One can show that these transverse derivatives actually vanish 

identically only when the boundary is both straight and is parallel to one of 

the Cartesian coordinate axes y or z. When this is not the case, the transverse 

derivatives are non-zero at the boundary. We recently have discovered that it is 

17 



possible to derive a universally valid limiting form of the elliptic system 

at the boundaries simply by imposing a local constraint on the angle of inter- 

section between the two families of coordinate curves 5 = const. and n = 

constant. In particular one may impose the constraint that the two families 

be orthogonal everywhere along the boundaries*. This remarkable result can 

be proved as follows. 

Consider the case where we wish to evaluate the function Cp in Eq's. (2.21a,b) 

at a boundary <'<b' constant. Upon eliminating the function $J between the 

two equations, one obtains a single equation that can be cast in the form 

(2.25) 

Now, the ratio yglzT, is merely the slope dy/dz of the family of coordinate curves 

n = const. that are transverse to the boundary curve 5 = Lb. We are at liberty 

to impose the constraint that the transverse coordinate curves n = const. be 

locally straight (i.e.,have zero curvature) in the neighborhood of the boundary. 

This constraint may be stated in the form 

(2.26) 

We now impose the further constraint that these transverse coordinate curves 

q = const. be locally orthogonal to the boundary 5 = <b. The orthogonality 

condition may be found as follows. Let G = (y,z) denote the radius vector in 

the Cartesian y-z plane. Then the local tangent vector to a coordinate curve 

n = const. is 

* Note that this does not necessarily imply that the curvilinear coordinates 

will be orthogonal in the interior. 
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(2.27a) 

Similarly the local tangent vector to a coordinate curve 5 = const. is 

+ 
rn = (yn +-J 

The two families of coordinate curves then are orthogonal if and only if 

sn.4 = 0 (2.28) 

The orthogonality condition (2.28) may be expressed in the form 

Y~Yg+zr-& = 0 (2.29) 

(2.27b) 

When we evaluate Eq. (2.25) at the boundary 5 = Lb, the second term in brackets 

on the R.H.S. vanishes by virtue of Eq. (2.26); the first term in those 

brackets also vanishes since f3 = 0 by virtue of the orthogonality relation (2.29 

The latter relation may be used to eliminate all G-differentiated terms from 

the L.H.S. of Eq. (2.25). This yields a limiting form of the elliptic system 

that is valid at the boundary 5 = <b, and that can be solved directl'y for the 

parameter cp 

1. 

(2.30) 

This represents a universally valid equation that can be used to compute the 

numerical value of Q at each grid point on the boundary in terms of the boundary 

values y,z once the differential operators are replaced by the difference 

oprators (2.24). The corresponding expression that determines the parameter $ 

along boundaries n = const. can be obtained directly from Eq. (2.30) by the 

substitution rp,rp~J,s. The values of the parameters throughout the interior of 

the n,s domain then are found by linear interpolation as in the original method. 

For example, cP(<,n) is computed from its values at the two boundaries 5 = const. 

by linear interpolation along lines n = const. in the rectangular computational 

domain n,~. This ensures that the final grid obtained from a numerical solution 

of the elliptic system (2.21) will reflect the boundary value distribution, and 

will have the desirable property that the two families of grid lines are locally 

orthogonal at the boundaries of the physical flow region. 
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It is instructive to explore the geometric interpretation of Eq. (2.30), which 

is used to evaluate the parameter 9 along a boundary z; = <b = const. in terms 

of the pre-assigned boundary values of .y,z! That equation can be re-cast in 

the form 

on 5 = Sb (2.31a) 

where s denotes the arc length along the boundary curve 5 = <b 

ds= dm (2.31b) 

Eq. (2.31a) clearly possesses exponential solutions if qis constant. .Thus, 

the use of Eq. (2.30) to evaluate the parameter Cp at each point along the boundary 

5 = <b is equivalent to constructing a local exponential curve-fit to the arc 

length between the pre-assigned boundary grid points. The interpolation of 

the parameters (p,$ into the interior of the computational domain simply extends 

the range of the curve-fit. The elliptic equation system (2.21) then merely 

provides a reliable, automatic means for translating the parameters into a local 

exponential curve-fit at each interior point that reflects the boundary value 

distribution, and that has the properties of regularity and monotonicity 

required of non-singular coordinate transformations. The resulting grid has 

the further desirable property that the two families of grid lines are locally 

orthogonal at the boundaries of the physical flow region. 

As a final observation, we point out that the general method has the flexibility 

to allow one to control at will the angle of intersection between the two families 

of grid lines at boundaries. This can be accomplished as follows. In place of 

the orthogonality condition (2.28); we use the generalized condition 

(2.32) 

where 0 denotes the local angle of intersection between the boundary curve 

5 = <b and the family of transverse coordinate curves n = const. A more 

convenient representation of this condition is 
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which satisfies Eq. (2.32) identically. Upon inserting 

constraint (2.26) into Eq. (2.25), all c-differentiated 

equation can be eliminated with the aid of Eq. (2.33). 

following equation for the parameter @ 

9 = -2(SinO),, (y~--;;lcot~)Ynrl+(zn+y~cot~)zrlrl 
sin0 - L L 

yn+zn 

(2.33) 

the zero-curvature 

terms in the resulting 

This yields the 

(2.34) 

This last equation can be used in the same fashion as Eq. (2.30) to compute 

numerically the parameter I in terms of n-derivatives of the pre-assigned 

boundary values y,z and of any pre-assigned distribution of 0 as a function of 

position along the boundary curve 5 = cb. 
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Section 3 

EVALUATION OF NOZZLE THRUST AND DISCHARGE COEFFICIENT 

3.1 THRUST 

There are two methods that can be used to compute the nozzle performance 

characteristics from the converged steady-state flowfield solution. For 

example, the net thrust may be computed by integrating the sum of the axial 

components of pressure force and viscous shear stress over the surfaces of the 

nozzle wall. Alternatively, the thrust may be computed from a global momentum 

balance. We shall employ the latter method because it involves only the in- 

tegration of the Cartesian components of the momentum flux vector over the 

peripheral faces of the computational space; whereas the former method requires 

that computed velocity field be differentiated numerically in order to deter- 

mine the wall shear stress. 

The fact that a global momentum balance can be used to evaluate force components 

such as thrust is a formal consequence of the global conservation properties of 

the system of partial differential equations that govern the flow, namely, the 

Navier-Stokes equations (2.1). These global conservation properties can be 

derived simply by taking the volume integral of Eq. (2.1) over the entire com- 

putational space 5, n, 5. As a concrete example, let us consider the internal 

flow in an isolated three-dimensional nozzle with the right-handed curvilinear 

coordinate system 5, n, 5 defined so that the surfaces 5 = 5, and 5 = ~~~~ 

represent the inflow and outflow boundaries, respectively; the surfaces n = no 

and n=n max represent the left and right sidewalls, respectively; and the 

surfaces 5 = 5 and c = smax represent the upper and lower walls, respec- 

tively. The vo'iume integral of Eq. (2.1) over the computational space 

5 <EC5 
O- - max' no 1. n I nmax' 5 0 2 5 2 ';max then may be written as 
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+ 
/ 

(i - Re-' i)n dn dr; dg (3.1) 

+ 
/ 

(6 - Re-' k)< dr, dS dn = 0 

The first term in Eq. (3.1) vanishes at steady state. The volume integral in 

each of the remaining terms reduces to the difference of two surface integrals 

because the argument of the volume integral is a perfect differential with re- 

spect to one of the three spatial coordinates. The final result may be written 

in the following form 

/ ms 'nmax' z;) - Re -’ ii (E n 3 max, <)I ds dc 

- 
/ 

L&E, no3 5) - Re-' ;(E. no, c)] dg dg 

(3.2) 

t 
/ 

;(E, n, <max)-Re-l id53 ~3 <,,,)I d< dn 

- 
/ 

[i(c, T-I, co)-Re-' i (5, TI, <,)I dc dn 

Equation (3.2) is a formal expression of the steady state global conservation 

principles for the entire computational space. If we examine the first scalar 

component of this vector equation, each of the terms on the left side of the 

equation represents the net flow of mass through one of the four nozzle walls. 

Similarly, in the fifth scalar component of (3.2), each term on the left repre- 

sents the net energy flux through one of the nozzle walls. In the middle three 
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components of Eq. (3.2), each term on the left represents the x, y, or z 

component of the total force acting on a wall. This includes the viscous 

shear force, which is represented by the term that is inversely proportional 

to the Reynolds number Re in the argument of the surface integral. 

The terms collected on the R.H.S. of Eq. (3.2) have a corresponding physical 

interpretation as the net flux of mass, momentum, and energy through the 

nozzle inlet and exit planes. Thus if we define a "generalized force vector" 

f whose five components represent, respectively, the net mass flux through 

the nozzle walls, the three Cartesian components of the net force acting on 

the nozzle walls, and the net energy flux through the nozzle walls; then "F 

can be computed from the equation 

(3.3) 

which is simply a restatement of Eq. (3.2). 

In the general case where both the interior flow and the external flow about 

a bilaterally symmetric nozzle are computed numerically, the nozzle structure 

is embedded entirely within the computational space. The curvilinear coordi- 

nate system then is defined such that the surface 5 = 5, represents the in- 

flow boundary and 5 = cm,, represents the outflow boundary, which is situated 

downstream of the nozzle structure; n = q. and 5 = 5, represent flowfield 

symmetry planes; and the surfaces n = nmax and 5 = cmax represent outer 

freestream boundaries. The steady-state volume integral of Eq. (2.1) over the 

computational space then yields the following equation for the generalized 

force vector ? acting on the nozzle structure 

T = 
/ 

iho. r), d dn di: - / ~(s,,,, q, c.) dn dg 

(3.4) 

-/ 
& qmaxy 5) dr; dc - 

J- 
k I-I, smax) dc dri 

25 



The viscous terms do not appear in the last two integrals on the right of this 

equation because those terms vanish in the inviscid freestream (Ref. 1, 

Section 2.4.4). 

Thesurfaceintegrals in Eqs. (3.3) and (3.4) can be evaluated numerically from 

the computed flow variables by sequential application of one-dimensional 

trapezoidal integration formulas for the two coordinate directions along the 

surface. The trapezoidal formula is appropriate because it is consistent with 

the second order spatial accuracy of the numerical algorithm that is used to 

compute the flowfield. 

We shall usually define the Cartesian coordinate system so that the x axis 

is oriented in the general streamwise direction. The second component of the 

generalized force vector ? then represents the net thrust. The first and 

fifth components of the generalized force vector represent the net mass and 

energy fluxes at the walls of the nozzle. The net wall mass flux should be 

identically zero if the walls are impermeable. Similarly, for adiabatic wall 

boundaryconditions,the net energy flux through the walls should also vanish 

identically. The extent to which these components of ? differ from zero 

when evaluated numerically then provides a measure of the global accuracy of 

the flowfield computation. 

We observe that the described method of computing the generalized force vector 

from surface integrals over the boundaries of the computational space is valid 

only if the algorithm that is employed to compute the flowfield does not compro- 

mise the global conservation principles that are satisfied by the partial 

differential equations (2.1). That is, the difference equations derived from 

(2.1) using the algorithm must obey the same global conservation principles, 

or Eqs. (3.3) and (3.4) will be invalid. Great care has been taken in the 

numerical computation of boundary conditions and in the formulation of artifi- 

cial smoothing and dissipative operators to ensure that the composite numerical 

algorithm does indeed possess the same global conservation properties enjoyed 

by the original partial differential equations. 
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3.2 DISCHARGE COEFFICIENT 

The nozzle discharge coefficient Cw is defined as the ratio of the total mass 

flow rate through the nozzle to the flow rate that would exist if the flow in 

the nozzle were isentropic [Ref. 4, p. 991. According to one-dimensional 

isentropic nozzle flow theory, the dimensionless isentropic flow rate per unit 

area at the throat of a nozzle under flow conditions is [Ref. 4, p. 851 

( ) 
1 v+’ 

2 
pu = - 

"q- ( ) 
Y+' 

where y is the specific heat ratio of the gas and the dimensionless density 

and velocity are referred to the stagnation chamber density and sound speed, 

respectively. The discharge coefficient is then given by the equation 

%y+1 
wT c, = A q 

2 y-l i 1 

T ( 1 
(3.5) 

where WT denotes the actual mass flow rate at the nozzle throat and AT is 

the cross-sectional area of the nozzle at the throat. The latter two quanti- 

ties may be computed from the final steady-state flowfield solution,as follows. 

We assume that the curvilinear coordinate transformation has the form 5 = S(X), 

so that the surfaces 5 = const. represent cross-sectional planes. Let 

5 = CT denote the throat location in the curvilinear coordinate system; the 

surfaces n = no and 5 = co represent flowfield symmetry planes; and the 

surfaces n = nw and 5 = 5 
W 

represent complementary portions of the 

interior surface of the nozzle wall. The first component f, of the flux 

vector i can be interpreted physically as themass flux in the 5 coordinate 

direction. The total mass flow rate at the throat then is simply 

(3.6) 
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An analogous expression for the throat cross-sectional area can be obtained by 

noting that the normal vector to any surface 

representation 

5 = const. has the Cartesian 

whence the element of area in such a surface is [Ref. 51 

(3.7) 

(3.8) 

Thus, the throat cross-sectional area is simply 

AT =/Lwjwim dnd6 

0 0 

(3.9) 

where the metrics are evaluated at the throat location 5=5 T' 

The surface integrals that appear in Eqs. (3.6) and (3.9) can be evaluated 

numerically in the same fashion as outlined in the preceding subsection for 

the surface integrals in the equations for the generalized force vector F. 
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Section 4 

FINAL FORMULATION OF TURBULENCE MODELS 

The viscous terms on the R.H.S. of Eq. (2.1) involve the Prandtl number and a 

non-dimensional viscosity coefficient V, which is referred to the dimensional 

viscosity at some reference state at which the Reynolds number Re is defined. 

For laminar flow, these are molecular transport properties, which we shall de- 

note by the subscript e. For air at moderate temperatures, the Prandtl 

number is approximately constant 

Pre = 0.72 (4.1) 

and the variation of viscosity with temperature may be approximated by a power 

law 

ue 
= Tm (4.2aj 

or may be computed from the Sutherland law 

T3/2 
lJe = T + l10.3/Tr("K) (4.2b) 

where the dimensionless temperature T is referred to the dimensional reference 

temperature T, at which the Reynolds number Re is defined. 

For turbulent flow, the viscosity is taken as the sum of the molecular value 

and a turbulent eddy viscosity 

!J = 
ue +lJ t (4.3a) 

where the dimension less eddy v iscosity is normalized by the reference value of 

pe that is used in evaluating the Reynolds number. The thermal conductivity, 
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which is proportional to the ratio between JJ and Pr, is also taken as the 

sum of laminar and turbulent contributions 

pe AL=-+ % 
Pr Pre Fq (4.3b) 

where pt and Prt are obtained from some sort of turbulence model. Such 

models generally employ a constant value for the turbulent Prandtl number 

Prt 
= 0.9 (4.4) 

whereas the eddy viscosity P, is strongly dependent on the character of the 

flow; e.g., boundary layer, shear layer, wake, or jet. The models that are 

used here for nozzle flows are presented below. The models are discussed 

first in the context of two-dimensional and axisymmetric flows, and are later 

generalized to more complicated three-dimensional flows. 

4.1 TWO-DIMENSIONAL AND AXISYMMETRIC FLOW 

In the present application, we require a turbulence model that is valid in the 

nozzle wall boundary layers; in the wake region behind a nozzle wall, side- 

plate, or wedge-plug; in the near-field mixing layer between the external flow 

and the nozzle exhaust stream, and in the far-field fully-developed jet region. 

Standard engineering turbulence models for the eddy viscosity are restricted to 

one or another of the described sub-regions of the flowfield, and must be 

patched together to provide a composite model. A general discussion of 

engineering models that apply in the various sub-regions has been given in 

Section 6 of Reference 1. These standard models were designed originally for 

use in analytical or simple numerical solutions for flows where the turbulent 

region is essentially a two-dimensional thin layer adjoining a region of 

spatially uniform, inviscid flow. In this type of solution, the boundaries 

of the turbulent region are relatively well-defined (such as the wall and the 

outer edge of a wall boundary layer) and determine the length scale in terms 
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of which the turbulence model is formulated. In complicated numerical solu- 

tions such as the nozzle flows of interest here, this need to locate the 

physical edge of a boundary layer, shear layer, or wake poses considerable 

difficulty; both because there, generally are substantial flow gradients even 

in inviscid regions, and because spatial and temporal oscillations often exist 

in the computed flow variables at grid points. The difficulty, already severe 

in two-dimensional flows, can become extreme in three-dimensional flows where 

the geometry of a shear layer, for example, may be so complicated that it is 

not clear how one ought to proceed in order to find the boundaries of the 

layer and use that information to define a local length scale. Furthermore, 

computational accuracy can be highly uncertain because the engineering turbu- 

lence models generally are quite sensitive to the numerical value of the local 

length scale. 

Baldwin and Lomax [Ref. 61 recently have presented a turbulence model for two- 

or three-dimensional wall boundary layers and wakes that does not require 

finding the boundaries of the turbulent region. This model is based directly 

on the engineering turbulence models described in Section 6 of Reference 1, but 

uses the spatial distribution of vorticity to determine the length scale in 

terms of which the eddy viscosity is computed. We shall employ a modified 

version of this model for the nozzle wall boundary layers and for the near- 

wake region downstream of the trailing edge of a nozzle wall, side-plate, or 

wedge-plug. For mixing layers and for the fully-developed jet region, we have 

developed a simple Prandtl mixing length type of model in which the turbulent 

length scale is defined in terms of the vorticity distribution, rather than 

in terms of the physical width of the mixing layer or jet. To facilitate the 

description of the models, we first define the character of the curvilinear 

coordinate system that is used for two-dimensional or axisymnetric flow. 

We orient the x-axis of the Cartesian base coordinate system in the general 

streamwise direction. For two-dimensional flow in the x-z plane, the flow is 

invariant with respect to y. The right-handed boundary-conforming curvilinear 

coordinate system is defined such that 5 = E(X), n = n(y), r = s(x,z). For 
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axisymmetric flow, the curvilinear coordinates are defined as in Eqs. (2.12), 

so that n is the azimuthal coordinate. The turbulence models to be used in 

the various sub-regions of the flowfield are presented below in terms of the 

described coordinate system. For convenience, the models will be presented in 

terms of a turbulent kinematic viscosity vt that is scaled by the reference 

Reynolds number. The dimensionless eddy viscosity coefficient that enters into 

Eq. (4.3) is obtained from vt by the following equation 

% = pRevt (4.5) 

4.1.1 Wall Boundary Layers 

The Baldwin-Lomax turbulence model [Ref. 63 is a two-layer model in which vt 

is given by 

t 

(v,) , 

inner 
n 5°C 

vt = (4.6) 

b,) 
, 

outer 
b 1 bc 

from the wall and 6c is the least value 

iscos ities are equal. The viscosity for 

where a denotes the normal distance 

of n at which the inner and outer v 

the inner region is defined by 

vt = 22 $1 

II = h[l - exp (-6+/A+)] 

t 
b = y-@Tx 

where 
-t 
w = ox? 

(4.7a) 

(4.7b) 

(4.7c) 

(4.8) 
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is the vorticity, the subscript w denotes conditions at the wall, the wall 
shear stress is given by 

'w = pew Glw (4.9) 

and the constants are 

k = 0.4 

AS = 26 

The corresponding formula for the outer region is 

(v,) 
outer = CIFFk(b) 

'1 = 0.0269 

F = 

K = U/2f, 

9 K<l 

3 K>l - 

where U is the maximum velocity in the profile 

u = 

Fk(~) is the Klebanoff intermittency factor 

F&d = 11 + c2 (c3 h/b,+] 
-1 

c2 = 5.5 
c3 = 0.3 

(4.10) 

(4.11a) 

(4.11b) 

(4.11c) 

(4.11d) 

(4.12) 

(4.13a) 

(4.13b) 
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and where the quantities dm and fm are defined at the maximum point of the 

function 

f(A)l = 6$1 11 - exp (.-*+/A+)] (4.14) 

In a numerical solution where both n and f are known only at discrete grid 

points, Baldwin and Lomax [Ref. 6] recommend that the true maximum be found by 

employing a three-point quadratic fit to the function f(o) in the neighborhood 

of the apparent maximum that occurs on the grid. 

This model has been used successfully in the computation of two- and three- 

dimensional flows with either attached or separated boundary layers [Ref. 61. 

To apply the model to two-dimensional and axisymmetric flows in the curvilinear 

coordinate system 5, n, 5 described earlier, we make several approximations 

that sharply reduce the computational labor. First, we assume that the 5 

coordinate is approximately orthogonal to the wall, so that the normal distance 

n can be approximated as the arc length along 5 coordinate curves. If ; 

denotes the radius vector in the Cartesian coordinate system, thenthe vector 

that is locally tangent to a 5 coordinate curve is 

The elemental arc length along the curve is then 

(4.15) 

(4.16) 

and the distance along the 5 coordinate curve can be obtqined by integration 

of Eq. (4.16) from the wall outward. 

The second approximation that we shall use relates to the computation of the 

vorticity vector in Eq. (4.8). The latter can be expanded in terms of the 

curvilinear coordinate system by means of the chain rule to obtain the equiva- 

lent expression 
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3 
w = VXG = V5X~Efv11X;rl+v~X; 

5 (4.17) 

For a two-dimensional flow in the surface TI = const., one can show easily that 

the dominant contribution to the magnitude of the vorticity vector in Eq. (4.17) 

comes from the component that is normal to the surface n = const. This state- 

ment also holds for axisymmetric flows in which n represents the azimuthal 

coordinate. The unit normal vector to a surface n = const. is 

r; = W1vnl (4.18) 

and the vorticity component in this direction is the inner product 

&Z (4.19) 

By invoking the well-known vector identity governing successive inner and 

cross products, (4.17) and (4.19) can be combined to yield the result 

L;: (4.20) 

The first term in brackets in this last equation involves quantities that we 

already have neglected in deriving the parabolized Navier-Stokes equations 

(2.1) [Ref. 1, Section 2.31, and we shall neglect this term here as well. In 

fact, one can see from Eq. (4.20) itself that the first term involves velocity 

derivatives with respect to the streamwise coordinate 5 ; i.e., in the di- 

rection along the wall. Such derivatives are always small in a boundary layer 

compared to derivatives 
5 

in the direction away from the wall, and can 

safely be neglected. With this approximation, the dominant part of the vorti- 

city magnitude can be written in the very simple form 

(4.21) 

where we have made use of the identity 
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vn x vc = J 
-1 -f 

2 

which is a property of the coordinate transformation x,y,z + 5, n, ZJ-. 

The numerical implementation of the above turbulence model is accomplished as 

follows. The spatial derivatives in Eqs. (4.16) and (4.21) are approximated 

by central difference operators at interior grid point and by the appropriate 

forward or backward difference operator at boundary grid points. The arc 

length A is computed from a by using the trapezoidal quadrature formula. 

Finally, the true maximum point of the function f in Eq. (4.14) is found as 

a function of the 5 coordinate; i.e., by operating in the computational co- 

ordinate system (6, n, I;) in which the grid spacing is always uniform, rather 

than in physical space where the grid spacing is nonuniform with respect to 

the arc length b. The 5 coordinate will always be stretched with respect to 

the physical coordinate 6 in order to resolve the flowfield gradients that 

exist in the boundary layer, and a local quadratic fit to the function f(c) 

is performed more easily and more accurately than a corresponding fit to the 

function f(a). Once the maximum point 5, is found, a similar quadratic fit 

to the function n(c) is used to determine the corresponding value bm = ~(5~). 

4.1.2 Wakes 

Baldwin and Lomax [Ref. 61 state that the formulation in Eqs. (4.11) - (4.14) 

for the outer region of a boundary layer also can be used in wakes if the 

bracketed exponential factor is omitted from Eq. (4.14), and U is redefined 

as the difference between the maximum and minimum velocities in the wake region 

” = I’lmax - 131mjn (4.23) 

Although it is not so stated in Reference 6, the transverse coordinate 6 

presumably is reckoned from the point of minimum velocity. For an asymmetric 

wake, this would imply that the regions on either side of the velocity minimum 
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are to be treated separately. If this were done, it follows from Eqs. (4.11) 

and (4.14) that the turbulent viscosity would be discontinuous at the point of 

minimum velocity. Furthermore, Baldwin (in a private communication) has stated 

that computational instabilities were encountered in attempting to use the outer 

formulation alone in the near wake of an airfoil because the grid is most re- 

fined near the velocity minimum where the value of vt is greatest. The insta- 

bility can be avoided (according to Baldwin) by arbitrarily using the same two- 

layer formulation as in the boundary layer, with the bracketed exponential factor 

omitted from Eq. (4.7b). Because the resulting inner formulation is inconsistent 

with other wake turbulence models, we shall employ a different model for the 

inner region of the wake, i.e., near the velocity minimum. This model employs 

the Prandtl mixing length formula (4.7a) but the mixing length R is defined as 

R = c u/lqmax (4.24) 

where U is given by Eq, (4.23), C is a constant and 

13 max = f% l&)1 
- 

is the maximum vorticity magnitude in the section of the wake under consideration, 

since the two sections on either side of the velocity minimum are treated 

separately. Note that vt in Eq. (4.7a) remains virtually continuous at the 

border between wake sections even though the latter are treated separately, be- 

cause 13 as computed from Eq. (4.21) essentially vanishes at the velocity 

minimum. 

For a wake, the constant C in Eq. (4.24) has the value 

C wake 
= 0.255 

This value was obtained as follows. 

(4.25) 

In any turbulence model such as that of Eqs. (4.7a) and (4.24), the constants 

must be evaluated from experimental data for the specific type of flow under 
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consideration. This is done for wake turbulence models by requiring that the 

wake spreading rate predicted by the model match that measured experimentally. 

An analytical wake solution based on a mixing length model is given in Schlichting 

[Ref. 7, p. 6001. In this solution, the mixing length is defined differently 

from Eq. (4.24), and is evaluated so as to match the measured wake spreading 

rate behind a circular cylinder transverse to the flow. We have used the wake 

velocity profile from the analytical solution to deduce the value of C in 

Eq. (4.25) that matches the experimental spreading rate when the mixing length 

is defined by Eq. (4.24). 

Schlichting [Ref. 7, p. 6031 also gives an analytical wake solution based on 

a different eddy viscosity model in which vt is given by 

vt = KbU (4.26) 

where b is the wake width and K is a constant that is determined to match 

the measured wake spreading rate. This model, unlike the mixing length model, 

assumes vt to be constant throughout the wake. Yet, the velocity profile 

from this analytical solution can be used to deduce a value for the constant 

C in the mixing length model that is in very close agreement with the value 

in Eq. (4.25). The value Cwake = 0.259 is obtained'by simply requiring that 

the mixing length model yield the same value for ut at the maximum vorticity 

point in the wake as does the model (4.26) from which the analytical velocity 

profile is derived. This means that we can calibrate the Prandtl mixing length 

model for a given type of flow by using the analytical solution from the simpler 

model (4.26) once the latter has been calibrated to agree with experiments for 

that type of flow. We shall make use of this calibration technique below in 

modeling vt for mixing layers and jets. 

4.1.3 Mixing Layers and Fully-Developed Jet Region 

As discussed in Section 6 of Reference 1, we had intended to employ the constant 

eddy diffusivity model (4.26). in mixing layers and in the fully-developed region 
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of the exhaust jet. This type of model in which v,~ is a constant is diffi- 

cult to link to other models for adjoining flow regions without having large 

discontinuities in the spatial distribution of wt. For this reason, we 

favor the Prandtl mixing length model given in Eq. (4.7a). There, vt 

is proportional to the local vorticity, which tends to be small both in inviscid 

regions and near the border between turbulent sub-regions that require different 

turbulence models. We shall apply a one-layer model of the type (4.7a) for a 

mixing layer or jet. As in the inner region of a wake, we determine the mixing 

length scale from the velocity extrema and the maximum vorticity (Eq. (4.24)), 

but the constant C must be calibrated separately for each type of flow. 

Mixing Layers 

Schlichting IRef. 7, P. 5981 gives an analytical solution for the two-dimensional 

mixing layer based on the constant eddy viscosity model (4.26), with the con- 

stant K selected to match experimental data on the width of the turbulent 

region. We have calibrated the mixing length model by the technique described 

in Section 4.1.2; that is, by requiring that the mixing length model yield the 

same value for v t at the maximum vorticity point in the layer as does the 

constant eddy viscosity model. The resulting value of the constant C in 

Eq. (4.24) is 

C mix = 0.136 (4.27) 

Fully-Developed Jet 

The region downstream of the point where the inner edge of the mixing layer be- 

tween the external flow and the nozzle exhaust stream penetrates to the flow 

centerline is known as the fully-developed jet. Since we are interested pri- 

marily in three-dimensional flows, we assume that this region far downstream of 

the nozzle exit is essentially similar to that for a round (axisyrrmetric) jet. 

Accordingly, we calibrate the mixing length model from the analytical solution 
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for the round jet based on the constant eddy viscosity model [Ref. 7, p. 6073, 

by again requiring that the mixing length model yield the same value for vt 

at the point of maximum vorticity. This gives the following value for the 

constant in Eq. (4.24) 

C jet = 0.129 (4.28) 

The latter is very close to the value in Eq. (4.27) for a mixing layer. Since 

the turbulence models are only approximate, in programming the models for numeri- 

cal solution, we simply have used the same value 

c = 0.13 (4.29) 

for both mixing layers and jets. 

4.2 GENERAL THREE-DIMENSIONAL FLOWS 

For axisymmetric three-dimensional flows, the turbulence model equations given 

in the preceding section are obtained by viewing the flow as essentially two- 

dimensional in an azimuthal coordinate surface rl=const. We denote the turbulent 
(5) viscosity so obtained as vt , since Eq. (4.21) for the vorticity magnitude in- 

volves 
c 

in which derivatives of the velocity are taken with respect to the 5 

coordinate direction within a surface r\ = const. For general three-dimensional 

flows governed by the parabolized Navier-Stokes equations (2.1) in which the 

viscous terms associated with the streamwise coordinate 5 are neglected, there 

are two principal cross-stream coordinate directions n, 5. In this case, we use 

the same quasi-two-dimensional approach to obtain .p based on regarding the 

flow as two-dimensional within a coordinate surface n = const., and apply a 

similar quasi-two-dimensional approach to compute a second value p based 

on regarding the flow as two-dimensional in a surface 5 = const. The equations 

for vin) are obtained from Eqs. (4.6)- (4.29)by the substitution (II, c)+(s, n). 

To obtain a single composite value for vt at each point of flowfield, we arbi- 

trarily combine the quasi-two-dimensional values by using the root-mean-square 
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(4.30) 

(n) In mixing layers and jet regions, both ut and vi') are obtained from 

the same formulation. However, in wall boundary layers and near wake regions, 

a certain arbitrariness exists in the quasi-two-dimensional approach. Con- 

sider, for example, a wall boundary layer. The boundary-conforming character 

of the curvilinear coordinate transformation is such that a wall is represented 

as either a surface n = const., a surface 5 = const, or as a composite of 

intersecting surfaces of each type. Over any portion of.a wall that is repre- 

sented as a surface 5 = const., the nature of the transformation is such that 

coordinate lines along which 5 alone varies are nearly orthogonal to the 

wall in the boundary layer, and the boundary layer formulation given in Eqs, 

(4.16) - (4.21) applies for computing VI") . Within each wall-like coordinate 

surface r = const., the boundary layer formulation (4.6) - (4.21) with the 

substitution (n,~) -f (5, Y-,) also is used to compute "in) in boundary layer 

regions where this surface 5 = const. intersects a wall that is represented 

as a member of the other family of coordinate surfaces n = const. However, 

a different model is necessary when this is not the case. An example is an 

axisymmetric flow where n is the azimuthal coordinate and the wall is a sur- 

face 5 = const.(L;f. Eq. (2.12)]. The boundary layer formulation then is 

appropriate for vt , in) but is inappropriate for vt since the 5 = const. 

surfaces are wall-like coordinate surfaces that do not intersect the wall. In 
(n) such cases, we arbitrarily use the mixing layer formulation to compute vt . 

(n) This always yields a value of vt that is dominated by the value of 

Vp) obtained from the boundary layer formulation, and ensures that the composite 
(5) value in Eq. (4.30) will recover the correct result, namely, vt , within 

the boundary layer. The same approach is used in two-dimensional wake regions 

in that the quasi-two-dimensional value of vt for the coordinate surfaces 

transverse to the wake is obtained from the mixing layer formulation. 
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SECTION 5 

NUMERICAL EXPERIMENTS 

A number of numerical experiments have been performed for two-dimensional internal 

and external flows to test various aspects of the implicit numerical method. These 

experiments are described in the following subsections. Section 5.1 demonstrates 

that the numerical method is capable of computing internal flows with boundary 

layer separation. Section 5.2 gives the results of computations that have been 

performed to investigate the effects of implicit boundary conditions and of time 

stepsize on the rate of convergence to steadystate and on the final steady state 

solution. Section 5.3 gives the results of parametric calculations to investigate 

the sensitivity of the solution to the magnitude of the explicit smoothing co- 

efficient. Section 5 demonstrates that the artificial implicit dissipative terms 

described in Section 2.4 have a favorable effect on the numerical stability and 

on the rate of convergence to steady state. The major conclusion drawn from these 

experiments are summarized in Section 5.5. 

5.1 COMPUTATION OF SEPARATED FLOW 

To demonstrate that the numerical method is capable of computing internal flows 

with boundary layer separation, we have performed an internal flow computation for 

a two-dimensional converging-diverging nozzle whose wall is composed of two cosine- 

shaped segments. The nozzle shape and computational grid are shown in Fig. 5-l. 

The computation is for laminar flow at a Reynolds number based on stagnation 

conditions of 105, a Prandtl number of unity, and viscosity proportional to temp- 

erature. The grid is 15 x 15 in the x and z directions, stretched exponentially 

in the z direction to resolve the nozzle wall boundary layer. That is, the 

curvilinear coordinate transformation is defined by the equations 

Z/Zmax(x) = [exp(W/cmax)-l]/[exp(o)-l] 

5 = (R-l)AT, , A< = 1 , R = 1,2 ,..., l,,, 

where o is a constant stretching coefficient, and zmax(x) is the wall shape. 
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Figure 5-l Computational Grid for Cosine Nozzle 



Crude a priori estimates of the boundary layer thickness indicated the latter to 

be approximately one percent of the local nozzle height over most of the length 

of the nozzle wall. To resolve this thin region, the stretching parameter u was 

selected to produce a grid spacing at the wall that is a factor of 5000 smaller 

than the grid spacing at the centerline. 

The computation has been performed using the implicit inflow, outflow, symmetry, 

and adiabatic wall boundary condition computation schemes described in Sections 

2.4 and 4.2 of Reference 1 and in Section 2.3 herein. 

The initial conditions are as follows. The nozzle is assumed to be choked at the 

throat. The pressure, density, temperature , and streamwise velocity (averaged 

over the cross section) are computed from one-dimensional inviscid isentropic flow 

theory for the nozzle area variation. These inviscid core conditions are applied 

over the lower half of the grid O<<<cmax/2, assuming that the streamlines are 

parallel to the grid lines 5 = constant.. The velocity components at the nozzle 

wall c. = cmax are set to zero to satisfy the no-slip viscous wall boundary conditions. 

The velocity components at the remaining grid points are linearly interpolated in 

c between Cmax/2 and <ma,- The Crocco relation is used to compute temperature 

from velocity in this region. Density follows from the equation of state by taking 

the pressure as uniform over the nozzle cross section at each x station. 

Convergence to steady state was obtained in 300 time steps using a constant step- 

size AT = 0.05, which corresponds to a Courant number Co(<) = 530. The computed 

longitudinal pressure distributions along the wall and centerline are shown in 

Fig. 5-2, together with the pressure distribution predicted by one dimensional 

isentropic flow theory (Ref. 4) for the nozzle area variation. Pressures shown 

are referred to stagnation pressure. As one might expect, the computation shows 

a substantial recompression at the wall near the exit plane that is induced by the 

locally concave wall shape. The inviscid core flow is supersonic in this region, 

and the adverse pressure gradient causes boundary layer separation between x = 1.4 

and the exit plane. The longitudinal velocity profile in the separated region is 

smooth, as shown in Fig. 5-3, and displays the classic flow reversal in the near- 

wall region that one expects from boundary layer theory. In the figure, velocity 

is referred to the stagnation sound speed. 

The vertical profiles of pressure and velocity at the geometric throat, x = 0, are 

given in Figs. 5-4 and 5-5, and show substantial nonuniformities due to the two 

dimensionality of the flow. 
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Figure 5-4 Pressure Profile Across Cosine Nozzle at Throat, x = 0. 
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Figure 5-5 Velocity Profiles Across Cosine Nozzle at Throat, x = 0. 
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5.2 EFFECT OF IMPLICIT BOUNDARY CONDITIONS AND TIME STEPSIZE ON THE SOLUTION 

5.2.1 Implicit Boundary Conditions 

A set of numerical experiments has been performed to explore whether the use of 

implicit boundary conditions has any significant effect on the rate of convergence 

to steady state or on the final steady state solution. These tests were made for 

two-dimentional laminar flow over an adiabatic flat plate at a freestream Mach Number 

M, = O.l,Reynolds Number Re, = 105, Prandtl Number Pr = 1, and viscosity propor- 

tional to temperature. The grid and initial conditions are as described in Ref. 1, 

Section 5. In one case, implicit wall, freestream, and outflow boundary conditions 

were employed as described in Ref. 1, Sections 2.4 and 4.2. In the other case, 

time-lagged explicit boundary conditions were applied as follows. During each time 

step, the flow variables <n+l= ;“+A$ are computed implicitly at interior grid points 

by assuming that A? = 0 at boundary grid points. The flow variables at boundary 

points are then updated at the end of the step by extrapolation of the solution 

;jn+lfrom interior points. At wall boundary points, the velocity components (u,v,w)"+' 

are set to zero and the wall pressure is computed from the normal momentum equation. 

For a flat plate, the latter equation implies that the pressure gradient in the 

wall-normal direction vanishes, hence the pressure at each wall point is set equal 

to that at the adjacent interior point. To satisfy the adiabatic wall conditions 

the gas temperature at the wall is extrapolated quadratically with zero gradient 

using the temperature at the two nearest interior points along the wall-normal grid 

line. At the downstream outflow boundary, 5n+1 is extrapolated linearly from the 

two nearest interior points along each grid line transverse to the outflow boundary. 

At the lateral outer boundary, the freestream values of pressure, temperature, and 

streamwise velocity component u are imposed, and the transverse momentum f1u.x 

components pv and pw are extrapolated linearly from interior points. 

Numerical solutions for the two cases, implicit vs. time-lagged boundary conditions, 

showed no significant difference in either convergence rate or in the final steady- 

state solution as obtained with a constant time stepsize AT = 0.01. The latter 

corresponds to a Courant number Co = 40 based on the minimum mesh spacing in the 

direction normal to the plate. Both cases converged within 300 steps and yielded 

steady-state drag coefficients that differed by only 0.07%. However, attempts 

to increase the time stepsize revealed that the solution with implicit boundary 

conditions remains numerically stable with time stepsizes significantly greater 
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than those attainable with time-lagged boundary conditions. 

With implicit boundary conditions, the computation remains stable and converges 

well for a time step as large as AT = 0.1 (Co = 400). With time-lagged boundary 

conditions, the computation is unstable for AT = 0.05 (Co = 100). We have not 

attempted to determine the precise stability boundaries for the two cases, because 

our experi'ence has shown that the stability boundary depends upon the flow 

conditions. With i& = 3, for example, the flat plate flow computation i's unstable 

at AT = 0.05 (Co = 300), even with implicit boundary conditions. 

As shown in the next section, the solution usually converges to steady state more 

rapidly, i.e., in fewer steps, the larger the stepsize AT. Because the use of 

implicit boundary conditions permits a larger stepsize, we conclude that implicit 

boundary conditions significantly improve overall computational efficiency by 

allowing convergence to be attained in fewer steps than would be required with 

time-lagged boundary conditions. 

In addition to the described experiments comparing implicit and time-lagged boundary 

conditions, we have performed some test computations to evaluate the sensitivity 

of the solution to the placement of the lateral outer boundary at which freestream 

pressure, temperature, and streamwise velocity component, u, are imposed asboundary 

conditions, but the transverse momentum components are computed implicitly from 

the transverse momentum equations, The results of these tests have been reported 

in detail in Ref. 9, and we merely summarize them here. 

For supersonic flow, t$,>l, the solution was found to be insensitive to the location 

of the outer boundary as long as the latter was positioned far enough above the . 

plate to enable the shock wave generated by the viscous interaction to be captured 

in the mesh. 

For subsonic flow, PL,<l, the solution again was insensitive to the placement of 

the outer boundary. The overall solution and the computed drag coefficient differed 

by less than 0.1% when the outer boundary was shifted inward from ten boundary layer 

thicknesses above the plate to as little as two boundary layerthicknesses above 

the plate. The convergence histories were also virtually identical for the two cases. 

Similar computations in which all freestream conditions were imposed at the lateral 

outer boundary displayed a markedly different behavior. As much as a factor of 

three more time steps were required to attain convergence to steady state, and the 

final solution was quite sensitive to the placement of the outer boundary. The 
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computed drag coefficient was found to vary with boundary position, and the 

velocity profiles within the boundary layer showed a serious distortion that did 

not arise when the transverse momentum components were computed implicitly at 

the outer boundary. 

5.2.2 Time Stepsize 

As indicated in Ref. I, a linear stability analysis shows that the implicit 

numerical algorithm is unconditionally stable for arbitrarily large values of the 

time step AT. In practice, we have found that for a given type of flow, there is 

a limiting value of the time step beyond which the algorithm is unstable. The 

instability is attributed to nonlinear effects that are unaccounted for by linear 

stability theory. The evidence suggests that the instability may be associated 

with the streamwise coordinate direction t;(x) in which viscous effects are small 

and have been neglected in the governing equations (2.1). This hypothesis is 

based on the following observations. 

Let Co(<) denote the Courant number based on the inviscid flux vector F for the 

streamwise 5 direction 

Co(E) = (Almax AT/M. (5.1) 

A 
where X is an eigenvalue of the Jacobian matrix F in Eq. (2.7d) and where the 

maximum is taken over all five eigeuvalues and over all grid points. The Courant 

numbers Co(n) and CO(G) associated with the transverse directions n,s are h 
similarly defined in terms of the eigenvalues of the Jacobian matrices i and H. 

One can show that most explicit algorithms for the Navier-Stokes equations are 

subject to the stability criterion 

maxICd<), Cob-d, Co(z;)> 5 1 (5.2) 

as long as the grid is locally fine enough to resolve the steep flow gradients 

that exist within viscous regions such as wall boundary layers and mixing layers. 

Note that the transverse Courant numbers are usually much greater than the stream- 

wise one because of the much smaller transverse physical grid spacing needed to 

resolve the steep transverse gradients that occur in viscous regions. 
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co(n), co(c.b~co(E) (5.3) 

In contrast, the implicit algorithm remains stable for Co(n), Co(s)>>l. However, 

with no artificial implicit dissipation (see Sections 2.5 and 5.4), we have found 

that the implicit algorithm tends to become unstable when the streamwise Courant 

number is of the order of unity or greater 

unstable > O(I) (5.4) 

This still gives the algorithm a great advantage over explicit schemes. For 

relatively simple external and internal flows, one can obtain a crude estimate 

of the stable range of AT from Eq. (5.4) when 5 = c(x) by using the approximation 

Co(E) ” c(l+M)A-r/Ax (5.5) 

where Ax is the physical grid spacing in the streamwise x direction and c and ki are 

the dimensionless local sound speed and Mach number, respectively. For example, 

for external flows such as the flat plate boundary layer addressed earlier, the 

flow variables are referred to freestream conditions and Eq. (5.5) can be evaluated 

at the freestream boundary c = c, = 1, M = M, using the smallest grid spacing 

(AX)mi n* For internal nozzle flows where the flow variables are referred to 

stagnation conditions,the streamwise grid is usually finest near the throat where 

M-l,c==j/==. 

External Flow Experiments 

We have performed a few numerical experiments to investigate the effect of the 

time stepsize on the rate of convergence for the M, = 0.1 adiabatic flat plate 

boundary layer problem described in Section 5.1.1. For a 15 x 15 5-c grid, the 

stable range of AT as estimated from Eq.'s (5.4) and (5.5) is 

(AT) stable < 0,065 

as noted in Section 5.1.1, the solution has been found to be stable for AT as 

large as O.l[Co(s) = 4001 and unstable for AT = 0.5[Co(5) = 20001. Table 5.1 

summarizes convergence data obtained from two computations with stepsizes that 

differed by a factor of five within the stable range. The first column in the 

table gives the stepsize, and the second column gives the time step number n at 

which the data in the remaining columns apply. The third column gives the L2 
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residual.R,which is defined as the volume integral over the computational space of 

the square of the set of steady-state terms in the Navier-Stokes equations (2.1) 

and the smoothing terms, normalized by the total volume 

R = 2dgdndy (5.6) 

v= 
i 

dtdndc 

The factor of one-fifth is introduced so that the res i dual represents an average 

over the five scalar components of the vector equation (2.1). The fourth column 

in the table lists the maximum relative change over the n'th step that occurred 

in any of the principal flow variables p, pu , and E at any point in the grid. 

During the later stages of convergence, this turns out to be the variable pu at 

one of the interior grid points adjacent to the wall. Note that this quantity 

strongly affects the local velocity gradient and hence the computed wall shear 

stress. This means that the computed skin friction drag represents a very 

sensitive indicator of whether the solution actually has attained convergence. 

The data in the last two columns of Table 5-1 are derived 

fifth column contains an estimate of the 

the solution 
I I Q/q max. The 

unsteadiness in 

from this value 

instantaneous degree of 

I 9,/q (5.7) 

whereas in the last column, this quantity is scaled by the square of the time 

step. 

From Table 5-1, one can see that, after a given number of time steps, the solution 

for the larger time step is much nearer convergence. All three measures of 

convergence, the residual, the maximum relative Aq, and the degree of unsteadiness 

qr/q, are much smaller for AT = 0.05 than for Ar = 0.01. The entries in the last 

column of the table are nearly independent of the stepsize for a fixed number of 

time steps n. This implies that, during the late stages of the calculation where 

the solution is near steady state, the remaining degree of unsteadiness Iqf/qlmax 

is inversely proportional to the square of the stepsize. We infer that the 

convergence rate is quadratic in the stepsite A-r, and that convergence is attained 

much more rapidly the larger the stepsize. 
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TABLE 5-l 

Convergence Data for Adiabatic Flat Plate Boundary Layer, M, = 0.1, Re, = 10' 

Stepsize, AT Step Number, n Residual, R 

0.01 137 

0.05 137 

0.01 300 

0.05 300 

1.53-g 1.72-3 1.72-l 1.72-’ 

7.90-” 3.15-4 6.3-3 1.58-’ 

9.70~lo 3.24-4 3.24-2 3.24-6 

1.11-l1 5.38-’ 1.08-3 2 .69-6 



Internal Flow Experiments -- 

The time stepsize also has a strong effect on the convergence rate for internal 

flows. As an illustration, we present some results for a two-dimensional compu- 

tation of internal laminar flow in the vertical symmetry plane of a so-called 

"two-dimensional" converging-diverging nozzle that has been tested experimentally 

in the static test facility of the NASA Langley 16-foot Transonic Wind Tunnel. 

The nozzle configuration is described in detail in Section 6.1. We note here only 

that the actual nozzle has straight sidewalls and a rectangular cross section of 

constant width. The inlet section is of constant height. This is followed by a 

straight-walled converging section that is connected to a straight diverging section 

by a circular arc that forms the geometric throat region. 

The present two-dimensional flow test computation is for nozzle operating conditions 

corresponding to the nozzle design condition with a stagnation pressure of 1 atm. 

and a stagnation temperature of 295 Kelvin, The Reynolds number based on stagnation 

chamber conditions and throat half-height is 930,000. Although one would expect 

turbulent flow at this large a Reynolds number, the computation assumes laminar 

flow with a Sutherland viscosity law, a Prandtl number of 0.72, and adiabatic wall 

boundary conditions. The flow is computed in the upper half of the vertical plane 

of symmetry y = 0, z 2 0, which is covered by a 23x15 grid in the x(j) and z(l) 

directions, respectively. The vertical (z) grid is stretched exponentially to 

resolve the nozzle wall boundary layer. The initial conditions used to start 

the computation were obtained in the same fashion as for the cosine nozzle test 

case discussed in Section 5.1. 

Two computations were performed, each starting from the same initial conditions. 

The first case was run for 500 steps with a constant stepsize AT = 0.05, which 

corresponds to a Courant number of 500 based on the minimum grid spacing in the 

z direction. The solution at step 500 is only partially converged, as can be seen 

from Figs. 5-6 and 5-7, which show the first two components of the "generalized 

force vector" s (see section 3) as a function of the time step counter NC. Figure 

5-6 displays FI the net mass flow through the nozzle (i.e., the difference between 

the mass flows through the nozzle inlet and exit planes), normalized by the product 

of the stagnation density, stagnation sound speed, and the square of the nozzle 

throat half-height. The net mass flux should vanish at ateady state. The final 

mass flow is out of balance by over 1.2%, and it is apparent that the solution has 

not yet converged. The dimensionless thrust F2 shown in Fig. 5-7 also shows some 

variation throughout the course of the run. 
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Figure 5-6 Convergence History of Net Mass Flow for 2-D Nozzle with Laminar 
Flow. Constant Time Stepsize Ar = 0.05. 
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Figure 5-7 Convergence History of Net Thrust for 2-D Nozzle with Laminar 
Flow. Constant Time Stepsize AT = 0.05. 
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Figure 5-8 Convergence History of Net Mass Flow for 2-D Nozzle with Laminar 
Flow. Variable Time Stepsize Increasing from AT = 0.05 to 0.3. 
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Figure 5-9 Convergence History of Net Thrust for 2-D Nqzzle with Laminar 
Flow. Variable Time Stepsize Increasing from AT = 0.05 to 0.3. 
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Figures 5-8 and 5-9 display the corresponding results from a second 500 step run 

in which the stepsize AT was increased automatically by the factor 1.1 after 

each step during which the maximum relative change Aq/q max was less than 1%. 
I I 

The stepsize increased gradually from its initial value AT = 0.05 to a maximum value 

AT = 0.3 during the first 250 steps, and remained at that value for the remaining 

250 steps.- The largest stepsize A-r = 0.3 corresponds to a Courant number Co(<) = 

2600. The solution is essentially at steady state after 500 such increasing steps. 

The final net mass flow is out of balance (Fl = 0) by less than O.OOl%, and the 

thrust is steady to five significant figures. Additional results from this 

converged case are given later in Section 6.1 and compared with the wind tunnel 

data. 

5.3 EFFECT OF ARTIFICIAL EXPLICIT SMOOTHING ON THE SOLUTION 

Earlier numerical experiments with the implicit algorith showed that the solution 

is not entirely insensitive to the explicit fourth-order smoothing terms which 

are incorporated to control short wavelength spatial oscillations (Ref. 1, Sections 

4.3 and 5.3). An array of numerical experiments has been performed to study 

parametrically the variation in the steady state solution when the magnitude of 

the smoothing coefficient is changed. 

A set of three smoothing terms is added explicitly to the R.H.S. of Eq. (2.16a). 

Each term represents a conservative fourth-order difference operator acting in 

one of the three coordinate directions S,n,<. According to a linear stability 

analysis (Ref. 1, Section 4.3), the coefficients of these terms are subject to 

the stability criterion 

82 (BiAT) [l+Ki] 5 1 
i=l 

(5.8a) 

(5.8b) 

where Xi, i = 1, 2, 3 represent the three directions E;,n,<, @AT denotes the 

smoothing coefficient for each direction, and N = 2 or 3 for'two or three- 

dimensional flow. In the numerical implementation, the product 6 I+Ki is 1 1 
taken to be the same for all directions. The stability bound on'the coefficient 

for each direction then is 
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@iAT ( 1/8N(l+Ki) 

We define a relative smoothing coefficient SMU as 

(5.9) 

WI = BiAT/(BiAT)max (5.10) 

where (8iAT)max denotes the upper bound obtained by invoking the equality in 

(5.9). The quantity SMU is used as an input to the computer program to specify 

the smoothing coefficient (BiAT) for each direction as a fraction of the maxi- 

mum stable value determined by inequality (5.9) 

BiAT = SMU/8N(l+Kj) 3 0 I_ SMU 5 1 (5.11) 

Note that, for-a fixed value of SMU, the magnitude of the explicit smoothing 

terms relative to the actual spatially differentiated terms in the Navier-Stokes 

equations (2.1) depends upon the time stepsize A-c. The reason is that the 

smoothing terms are appended to the R.H.S. of Eq. (2.16a), in which the true 

spatially differentiated terms of the Navier-Stokes equations are multiplied by 

the factor AT. This fact has been accounted for in Eq. (5.8) by defining the 

coefficient (8iA-c) of the smoothing term for each direction to include AT as a 

factor. The magnitudes of the artificial smoothing terms relative to the actual 

terms in the Navier-Stokes equations then depends on the quantities Bi, and woul 

be independent of the time stepsize if each Bi were taken as constant and inde- 

pendent of AT. However; this would cause the stability criteria (5.8) or (5.9) 

to be violated for sufficiently large values of A-r. In terms of the quantity 

SMU, the stability criteria require that the coefficient BiAT satisfy Eq. (5.11) 

d 

Since Bi itself governs the magnitude of the artificial smoothing terms relative 

to the actual Navier-Stokes terms, it follows from Eq. (5.11) that these relative 

magnitudes will be preserved under a change in AT only when the ratio SMU/A-c is 

held fixed, rather than when SMU itself is held fixed. That is, the ratio SMll/~-r 

and not SMU itself governs the relative magnitudes of the smoothing terms and the 

true Navier-Stokes terms. 

We have performed an array of numerical experiments for the adiabatic flat plate 

laminar flow problem to determine the sensitivity of the steady-state solution 

to the magnitude of the smoothing strength.SMU/AT for a range of freestream Mach ' 

numbers 0.1 < M, 2 3.. - The Reynolds number is i05, the Prandtl number is unity, 

and viscosity is proportional to the temgerature. 
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Table 5-2 displays the variation in the computed steady-state drag coefficient CD 

with smoothing coefficient for various freestream Mach numbers. For each t%,, the 

last column in the table gives the percentage by which the drag coefficient for a 

given value of SMU/A-c differs from the drag computed with SMU/AT = 1. The results 

indicate that the solution is fairly insensitive to the magnitude of the smoothing 

coefficient, except at the lowest Mach number considered. For very low-speed flows, 

it appears that the accuracy of the solution is degraded significantly unless the 

ratio SMU/A-c is of the order of unity or less. 

The smoothing coefficient also was observed to have some effect on the rate of 

convergence to steady state at both the lowest and highest Mach numbers considered. 

Transient oscillations in CD were damped out somewhat more quickly with SMU/A-c = 10. 

In the supersonic case, M, = 3, such behavior is to be expected because the 

smoothing terms supply the dissipative mechanism that enables computation of the 

embedded shock wave induced by the displacement effect of the viscous boundary 

layer see Ref. 1, Section 5.2 . 1 
5.4 EFFECT OF ARTIFICIAL IMPLICIT DISSIPATION ON STABILITY AND CONVERGENCE 

It has been noted in Section 5.2.2 above that, for the "parabolized" Navier-Stokes 

equations (2.1) wherein the viscous terms associated with the streamwise coordinate 

5 are neglected, the implicit algorithm tends to become unstable for large time 

steps AT atwhich the streamwise Courant number Co(c) is much greater than the order 

of unity. We have performed some numerical experiments.which show that the intro- 

duction of artificial implicit dissipation (see Section 2.4) extends the regime of 

stability to Cournat numbers Co(S) >> 1 when the dissipation coefficient cx is of 

the order of unity. This allows steady-state solutions to be attained in fewer 

time steps because the rate of convergence is generally greater the larger the 

time stepsize. 

The results of these experiments for adiabatic flat plate laminar flow at various 

freestream Mach numbers are summarized in Table 5-3. The table contains the 

results of two runs for each Mach number Mm. The first run employed no implicit 

dissipation (a = O)and a stepsize A-r for which the streamwise Courant number Co(c) 

is of the order of unity. The second run used a dissipation coefficient c1 = 1 

and a variable step AT, starting with the same initial flowfield and the same 

initial values of AT and SMU (the explicit smoothing coefficient) as in the first 

run. The time step during the second run was increased automatically by the factor 
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TABLE 5-2 

Effect of Explicit Smoothing Coefficient on Steady State Drag Coefficient Adiabatic 

Flat Plate, Re, = 105, Pr = 1, pe = T 

Mach No. k AT 
- 

SMU SMU/AT CD x lo3 % Variation 

0.1 0.05 0.5 10 4.1423 t3.7 

0.05 1 3.9940 0.0 

0.005 0.1 3.9831 -0.27 

0.8 0.05 0.5 10 4.0727 to.45 

0.05 1 4.0546 0.0 

0.005 0.1 4.0529 -0.04 

3.0 0.01 0.1 10 4.6633 to.7 

0.01 1 4.6309 0.0 

0.001 0.1 4.6287 -0.05 



TABLE 5-3 

Effect of Implicit Dissipation (~0) on Stability and Convergence of Adiabatic Flat Plate* 

Boundary Layer Computations Re, = 105, Pr = 1, 1-1 = T 

M, CY. ATi A-cf Cq(S) Co&) CDf x lo3 (NC)f - - (SMWdf (NC), 

0.1 0 5 -2 5 -2 0.77 2.0t2 1.0 3.9940 1 277 

1 5 -2 2.4+' 3.7+3 9.8+5 3.3-3 3.9894 94 139 

0.8 0 5 -2 5 -2 1.25 2.0+2 1.0 4.0546 1 42 

1 5 -2 1 +2 2.5+3 4.1t5 8.0-3 4.0608 85 36 

1.5 0 3 -2 3 -2 1.0 1.3+2 1.0 4.1825 1 89 

1 3 -2 70 2.3t3 2.9- 8.8-2 4.2028 93 122 

* All runs were for 200 steps 



1.1 following each step during which IAq/ql,,, was less than l%, until the 

time stepsize reached a pre-assigned maximum value A-rf, at which point the 

stepsize was held fixed for the remainder of the run. Whenever AT was raised 

in this fashion, the explicit smoothing coefficient SMU also was raised by the 

same factor until it reached a maximum value SMU = 0.8. The latter bound was 

imposed to avoid violating the stability criterion for the smoothing terms 

[Eq. (5.11) of Section 5.31. The various columns in Table 5-3 list in order 

the freestream Mach number &; the initial and final stepsizes ATi and A-rf; 

the streamwise Courant number Cof(S) as estimated from Eq. (5.5) using*ATf; 

the Courant number Cof(s) based on A-rf, on the maximum eigenvalue of ah/a:, 

and on the minimum grid spacing in the wall normal direction; the final value 

of the explicit smoothing strength (SMU/A-r)f; the final drag Coefficient CUf 

at the last time step of the run; the time step index (NC)f at which the time 

stepsize reached its maximum value ATf; and the time step index (NC)S at 

which the drag coefficient first attained a value within tO.l% of CUf and 

stayed in that range for the remainder of the run. This last entry in the 

table has been included merely to provide some quantitative measure of the 

convergence rate. Note that, for a given Mm, the final values of CUf differ 

slightly between the runs with fixed and variable stepsize AT because the 

ratio (SMU/A-c)f could not be held fixed and still satisfy the stability 

criterion (5.11) in the variable-step run. 

For each freestream Mach number in the table, a run of fixed stepsize AT for 

which Co(<) = 10 was attempted without implicit dissipation (a = 10) and was 

found to be unstable. In contrast, all of the variable-step runs with ct = 1 

remained stable and converged rapidly for a maximum value of Cof(S) 4 3000. 

The drag coefficient histories for these three runs are displayed in Figs. 5-10 

to 5-12. We haven't determined the maximum value of Co(<) that can be attained 

with c1 = 1 for various Mach numbers. However, an attempted variable-step run 

at M, = 0.1 with no pre-assigned bound on AT eventually became unstable at a 

value Co(c) somewhat in excess of 4000. 

Implicit dissipation is potentially useful only for obtaining steady-state solutions. 

The artificial terms destroy the time-accuracy of the computation and lead to a 

physically unrealistic transient behavior. Neither does the implicit dissipation 

always ensure either stability or faster convergence to steady state. For 
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figure 5-10 Flat Plate Drag Coefficient History Computed with Implicit 
Dissipation cx = 1, (AT)~~~ = 240. M, = 0.1, Re, = 105. 
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Figure 5-11 Flat Plate Drag Coefficient History Computed with Implicit 
Dissipation c1 = 1, (AT)~~~ = 100. M, = 0.8, Re, = 105. 
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Figure 5-12' Flat Plate Drag Coefficient History Computed with Implicit 
Dissipation a = 1, (AT),,,~~ = 70. IL= 1.5, R%, = 10 . 
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example, we performed a run at M, = 3 using IX = 1 and a constant stepsize 

AT = 0.01 Co(<) 
1 

= 0.561 that failed to reach steady state in 200 steps; whereas, 

as indicated in line 5 of Table 5-3, the corresponding run with c1 = 0 converged 

adequately in the same number of steps. A similar run for M,, = 3 with an increasing 

stepsize became unstable at A-r = 0.02. This suggests that the implicit dissipation 

described in Section 2.4 may have a destabilizing effect for supersonic flows 

with embedded shock waves. In another example, an internal nozzle flow computation 

starting from very crude initial flowfield conditions proved unstable with c1 = 1 

for a small, fixed stepsize AT Co(S) = 
1 

11, but was stable with cx = 0. In the 

light of the results shown in Table 5-3, these examples suggest that the implicit 

dissipation can enhance both stability and convergence for subsonic and transonic 

flows if very large time steps are employed, and if the initial conditions either 

are approximately correct, or are first regularized by a short preliminary run 

with cx = 0 using shorter time steps. The applicability of implicit dissipation 

to supersonic flows with embedded shock waves requires further investigation. 

5.5 CONCLUSIONS 

The principal conclusions that have emerged from the numerical experiments described 

in the preceding subsections are summarized below. 

1. 

2. 

3. 

It has been demonstrated that the implicit numerical method is capable of 

computing viscous flows with boundary layer separation. 

Implicit boundary conditions are superior to explicit time-lagged boundary 

conditions in that they allow the use of larger time stepsize without 

numerical instability. For external flows, implicit freestream boundary 

conditions wherein the momentum components transverse to the boundary are 

computed implicitly from the transverse momentum equations are vastly 

superior to the simple method where all freestream conditions are imposed 

at the freestream boundary. The latter conditions retard convergence to 

steady state, and seriously degrade the accuracy of the computed flowfield. 

In general, larger time stepsizes give faster convergence to steady state. 

Although a linear stability analysis indicates the implicit algorithm to be 

unconditionally stable, experience indicates that the algorithm tends to 

become unstable at time stepsizes for which the streamwise Courant number 

exceeds the order of unity. Numerical experiments indicate that, within 

the stable range, the convergence rate is quadratic in the time stepsize. 
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4. The algorithm involves artificial explicit fourth order smoothing terms. 

Numerical experiments show that the accuracy of the solution is fairly 

insensitive to the magnitude of the smoothing coefficient, except for 

very low-speed subsonic flows. For such flows, the accuracy is degraded 

significantly unless the ratio of the smoothing coefficient to the time 

stepsize is of the order of unity or less. 

5. Numerical experiments indicate that, under favorable conditions, the 

introduction of artificial implicit dissipation extends the regime of 

numerical stability to streamwise Courant numbers far in excess of unity. 

This yield faster convergence to steady state when large time stepsizes are 

used (Co >> 1). However, the implicit dissipation must be used with 

caution. It destroys the time-accuracy of the solution and cannot be 

employed in cases where the unsteady behavior of the flow is of interest. 

The present numerical experiments suggest that the implicit dissipation 

is most effective for subsonic and transonic flows. Further investigation 

is recommended to study its behavior for supersonic flow with embedded 

shock waves. 
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NOZZLE FLOWF 

SECTION 6 

IELD PREDICTIONS AND COMPARISON WITH EXPER IMENTAL DATA 

Laminar and turbulent flowfield computations have been performed for 

several three-dimensional nozzles that have been tested experimentally in the 

NASA Langley 16-foot Transonic Wind Tunnel. The first computation is for internal 

flow in a so-called "two-dimensional" converging-diverging nozzle with flat 

sidewalls and a rectangular cross-section. The second computation is for the 

combined internal and external flowfields of a circular, converging nozzle 

in a high subsonic external flow. The results of these computations are 

presented below. 

6.1 Internal Flow in a "Two-Dimensional" Converging-Diverging Nozzle 

6.1.1 Configuration, Operating Conditions, and Computational Grid 

The nozzle configuration and dimensions are shown in Fig. 6-l. The 

configuration is bilaterally symmetric with flat sidewalls and a rectangular 

cross section. The inlet section is of constant height. This is followed 

by a straight-walled converging section that is connected to a straight- 

walled diverging section by a circular arc that forms the geometric throat 

region. The exit-to-throat area ratio is 1.0891 for a design exit Mach 

number of 1.35: The corresponding design exit pressure and temperature from 

one-dimensional isentropic flow theory are p = 0,337 and T = 0.733, 

normalized by the stagnation chamber pressure and temperature, respectively. 

The operating conditions correspond to the design condition with a stagnation 

pressure of 1 atm. and a stagnation temperature of 295 Kelvin. The Reynolds 

number based on stagnation conditions and throat half-height is 9.3 x lo5 as 

computed from the Sutherland viscosity law. The working fluid is air (y = 1.4, 

Pr = 0.72). 

For the flow computation, the origin of the Cartesian coordinate system 

is positioned at the geometric center of the throat. The x axis coincides 

with the intersection of the vertical and horizontal symmetry planes. 
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Figure 6-1 Configuration and Coordinates of Two-Dimensional Nozzle 



The latter coincide with the coordinate planes y = 0 and z = 0. Symmetry 

boundary conditions are applied at these planes, and the flow is computed in 

the quarter-space y:O, ~10. The inflow boundary is positioned at x = -4 in., 

and the outflow boundary is at the nozzle exit. The flow region between 

these planes, the symmetry planes, and the nozzle walls is covered by a 23 x 

10 x 15 grid in the x, y, and z directions, respectively. The streamwise (x) 

grid spacing is nonuniform with a relatively fine spacing near the throat, 

and the grid in each cross-sectional plane is exponentially stretched in both 

the y and z directions to resolve the wall boundary layers. The computational 

coordinate system thus has the form 5 = S(x), n = n(y), 5 = c(z). The 

transverse grid spacings Ay, AZ are several thousand times smaller at the 

walls than at the symmetry planes. Side and end views of the grid are 

displayed in Fig. 6-2a and 6-2b, and an orthographic projection of the 

three-dimensional grid is given in Fig. 6-2~. All dimensions shown are 

referred to the throat half-height. 

Laminar and turbulent flow computations have been performed for two- 

dimensional flow in the vertical plane of symmetry, and a laminar flow 

calculation has been performed on the three-dimensional grid shown in Fig. 6.2. 

All computations employ adiabatic wall boundary conditions. Initial conditions 

are obtained as follows. The inviscid core flow is obtained from one- 

dimensional isentropic flow theory for the nozzle area variation. These core 

flow conditions are applied over the central part of the grid in each cross- 

sectional plane l<R<Rmax /2, -- assuming that the local velocity vector is oriented 

along the streamwise grid lines. Velocities on the remaining part of the 

grid are linearly interpolated in k and a to zero at the walls. Pressure is 

taken as uniform over each cross-sectional plane. Temperature in the nonuniform 

velocity region near the walls is obtained from velocity through the Crocco 

relation, and density follows from the equation of state. The resulting total 

pressure, total temperature, and transverse (v, w) distributions over the 

inflow plane are used as inflow boundary conditions for the flowfield compu- 

tation (see Section 2.3.1). The numerical results of the computations are‘ 

presented below in dimensionless form. Dimensions are referred to the throat 

half-height, which is the reference length in terms of which the Reynolds 
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Figure 6-2a Side View of Computational Grid for Two-Dimensional Nozzle 
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Figure 6-2b End View of Computational Grid for Two-Dimensional Nozzle 
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Figure 6-2~ Orthographic View of Grid for Two-Dimensional Nozzle 
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number is defined. Pressure, density, and temperature are referred to the 

corresponding stagnation conditions, and velocities are referred to the 

stagnation sound speed. 

6.1.2 Two- Dimensional Flow Results 

Laminar Flow 

The convergence history of this laminar flow computation has already 

been discussed in Section 5.2. Convergence was attained in 500 variable time 

steps. The first 100 of these were of constant size AT = 0.05, the next 70 

were of increasing size, and the final 280 were constant at AT = 0.3[Co(s) = 26001. 

The computation took about 3 l/2 min. of CPU time on a CDC 7600 machine. The 

computed discharge coefficient is Cw = 0.9972, and the dimensionless thrust 

is 7.2612. The latter is referred to po(coL)'/2 where the subscript denotes 

stagnation conditions, c is the sound speed, and L is the reference length 

(the throat half-height). 

The nozzle wall pressure distribution is shown in Fig. 6-3, along with 

preliminary experimental data from the wind tunnel test (Ref. 10). The two 

sets of data represent pressure measurements on the upper and lower walls of 

the test nozzle. The computed pressure distribution has the same qualitative 

behavior as the data, including a slight recompression downstream of the 

geometric throat. The computation is in good quantitative agreement with 

the data in the subsonic and transonic region, but systematically under- 

predicts the data by about 5% in the supersonic region downstream of the 

throat. We shall see later that a turbulent flow computation agrees slightly 

better with the data in this region. 

The computed pressure distributions along the wall and the nozzle center- 

line displayed in Fig. 6-4 show a substantial difference in the subsonic and 

transonic region. 

Turbulent Flow 

The turbulent flow computation employed the converged laminar flowfield 

as initial conditions. The initial stepsize AT = 0.05 increased by a factor 

of 6 over the first 75 steps and was held constant for 325 more steps, 
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Figure 6-3 Comparison of 2-D Laminar Flow Wall Pressure Distribution With 
Experimental Data of Ref. 10. Data Points: Circles, Upper 
Flap; Triangles, Lower Flap. Computation: Solid Line. 
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Figure 6-4 Computed Wall and Centerline Pressure Distributions for 2-D Laminar 
Flow. Solid Line: Wall. Dashed Line: Centerline. 
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although convergence was attained well before the end of the run. The 

computer time per step was about 13% greater than in the laminar flow 

calculation because of the extra computational labor involved in evaluating 

the turbulent viscosity. 

The computed steady-state discharge coefficient is Cw = 0.9961, and 

the dimensionless thrust is 7.2922. The convergence history is displayed in 

Fig. 6-5 which shows the dimensionless net mass flux and thrust as a function 

of the time step index NC. 

The computed wall pressure distribution displayed in Fig. 6-6 is in 

somewhat better agreement with the experimental data than the laminar flow 

results shown in Fig. 6-3. The computed wall and centerline pressure distri- 

bution are shown in Fig. 6-7. The vertical profiles of velocity and pressure 

across the nozzle throat are given in Fig. 6-8. Similar profiles across the 

nozzle exit plane (the outflow boundary) are given in Fig. 6-9. Figures 

6-7 to 6-9 show that substantial flowfield gradients exist across the nozzle 

in the neighborhood of the throat. In the supersonic region downstream of 

the throat, however, the pressure becomes uniform across the nozzle, The 

velocity is also spatially uniform, except in the near-wall region occupied 

by the turbulent boundary layer. 
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Figure 6-5a Convergence History for 2-D Turbulent Flow Computation Showing 
Net Mass Flow Rate Versus Time Step Index NC. 
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Figure 6-5b Convergence History of 2-D Turbulent Flow Computation Showing 
Net Thrust Versus Time Step Index NC. 
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Figure 6-6 Comparison of 2-D Turbulent Flow Wa 11 Pressure Distribution With 
Experimental Data of Ref. 10. Data Points: 
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Figure 6-7 Computed Wall and Centerline Pressure Distributions for 2-D 
Turbulent Flow. Solid Line: Wall. Dashed Line: Centerline. 
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6.1.3 Three-Dimensional Flow Results 

A three-dimensional laminar flow computation was performed on the 

grid shown in Fig. 6-2. The computation was run for 500 time steps, by which 

time the computed pressure field was essentially converged and was in agreement 

with the two-dimensional flow solution at the vertical plane of symmetry. The 

maximum Courant number (based on the minimum transverse mesh spacing) varied 

from 94 to 516 over the course of the run, which took approximately one hour 

of CDC 7600 computer time. The computed net thrust and discharge coefficient 

are 7.2197 and 0.9774, respectively. Both are somewhat lower than the two- 

dimensional flow predictions, which do not account for the sidewall. 

Figure 6-10 shows a comparison of the computed wall pressures with 

experimental data. The pressure distribution along the upper nozzle wall at 

the vertical plane of symmetry is given in Fig. 6-10a. The corresponding 

pressure distribution along the sidewall at the horizontal plane of symmetry 

is displayed in Fig. 6-lob. As for the two-dimensional results, the compu- 

tation tends to underpredict the data downstream of the throat, but agrees 

closely with the data in the subsonic and transonic regions upstream of the 

throat. 

The computed flowfield is smooth, regular, and shows no evidence of 

boundary layer separation over most of the nozzle interior. However, the 

flowfield contains a strong secondary flow in the neighborhood of the axial 

corner where the upper wall and sidewall intersect. This secondary flow is 

localized in the throat region -0.88 5 x 5 0.6 (see Fig. 6-2a), and displays 

a flow reversal. Near the upstream and downstream ends of the described x 

interval, the velocity profiles near the axial corner display a slight flow 

reversal that is reminiscent of the reverse flow profile in a separated 

boundary layer. However, there is no flow reversal over the bulk of the 

upper wall or sidewall except in the immediate neighborhood of the corner. 

The peak reverse velocity exists at an axial station just upstream of the 

throat (x = -0.186), and is about 100% greater in magnitude than the general 

streamwise velocity V,=O.8 along the nozzle centerline at the same x station. 

The secondary flow thus is more properly characterized as a reverse jet rather 

than as a region of separated flow. The jet-like structure is readily apparent 

in Figs. 6-lla, b, which show the computed velocity profiles in the cross- 

sectional plane x = -0.186. Figs. 6-lla,b display the velocity profile along a 

vertical grid line Y = const. that passes approximately through the peak 

velocity point of the jet. Figs.. 6?11c,d di,splay a similar profile along a 

horizontal grid line Z = const. that passes approximately through the peak. 
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Figure 6-lob Computed Pressure Distribution Along Nozzle Sidewall at 
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Figure 6-lla Velocity Profiles Along a Vertical Grid Line Passing 
Approximately Through Peak of Reverse Corner Jet 
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Figure 6-11~ Velocity Profiles Along a Horizontal Grid Line Passing 
Approximately Through Peak of Reverse Corner Jet 
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6.2 INTERNAL AND EXTERNAL FLOWFIELD OF A CIRCULAR NOZZLE 

6.2.1 Configuration, Operating Conditions, and Computational Grid 

The configuration of this axisymmetric nozzle is displayed in Fig. 6-12. 

The interior wall has an inlet section of constant radius, a convergent section, 

and an exit section of constant radius. The external wall consists of an initial 

section of constant radius, followed by a circular arc boattail. The internal 

and external surfaces do not meet at a sharp trailing edge at the exit. Rather, 

the trailing edge is squared off by a vertical cut. Because the numerical 

algorithm employs a Cartesian base coordinate system, axisymmetric flows must 

be treated as any other three-dimensional flow; that is by using a full three- 

dimensional grid. In the present case, the flow region about the nozzle is 

bounded by inflow and outflow planes normal to the symmetry axis, and by a 

cylindrical outer boundary (the freestream boundary) that is concentric with the 

nozzle and is located 5 cm away from the cylindrical initial section of the 

outer surface of the nozzle. The outflow boundary is placed about one exit 

diameter downstream of the nozzle exit so as to include the near-field exhaust 

jet and the wake of the nozzle wall in the computation. The first quadrant y>O, 

z>O of the region between the inflow and outflow planes and within the outer - 
cylindrical boundary is mapped onto a rectangular computational parallelepiped 

as shown in Fig. 6-13. The flow computation is carried out on a uniform 

28x5~28 grid in this computational space. Note that the mapping is singular, 

inasmuch as the axis of symmetry maps onto the surface <=O in the computational 

space. 

The image of this uniform grid in physical space consists of five meridional 

planes (including the symmetry planes y=O and z=O) equally-spaced at intervals of 

22.5 degrees; 28 cross-sectional planes along the x direction, of which the last 

five are downstream of the nozzle exit; 15 grid points distributed exponentially 

across the interior of the nozzle in the radial direction, and another 13 points 

distributed exponentially between the outer surface of the nozzle wall and the 

cylindrical outer boundary. Side and end views of the physical grid are displayed 

in Figs. 6-14a and 6-14b. 

The wind tunnel test conditions are such that both the outer and internal 

flows are turbulent. The conditions are as follows (Ref. 11): Air is the medium 

for both the internal and external flows (y = 1.4, Rr = 0.72). The internal flow 

stagnation pressure and temperature are 1.32 atm. and 300 Kelvin, respectively. 
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The external flow has a freestream Mach number M, = 0.8, a stagnation temperature 

of 275 Kelvin, and the freestream static pressure is half the internal flow 

stagnation pressure. The Reynolds number based on internal flow stagnation 

chamber conditions and on the nozzle exit radius is 1.1 x 106, using the 

Sutherland viscosity law. 

The boundary conditions for the computation are as follows: Adiabatic 

wall boundary conditions are employed. The transverse velocity components 

are assumed to be small over the entire inflow boundary (v = w = 0), and the 

total temperature over the external flow portion of the inflow boundary is taken 

as uniform and equal to the freestream stagnation temperature. Static pressure 

surveys taken during the test showed no significant departure from the freestream 

pressure over the external flow part of the inflow plane (Ref. 12). This 

information, together with the measured external boundary layer velocity distri- 

bution has been used to calculate the remaining flow variables, which are held 

fixed over the external flow portion of the inflow plane during the flowfield 

computation. 

On the portion of the inflow plane interior to the nozzle, probe surveys 

lacked the resolution to give information any more detailed than an estimate 

on the boundary layer thickness on the interior wall surface (Ref. 12). 

Consequently, the total temperature has been assumed uniform and equal to the 

measured stagnation temperature. A one-seventh power boundary layer velocity 

profile has been used together with the static pressure and core velocity 

predicted by one-dimensional isentropic flow theory to estimate the total pressure 

distribution across the part of the inflow plane interior to the nozzle. The 

described total pressure and total temperature are used as boundary conditions 

for the implicit flowfield computation (see Section 2.3.1). 

The initial conditions for the region between the inflow plane and the 

nozzle exit plane are obtained as follows. Flow conditions in the interior of 

the nozzle are estimated in the same fashion as described in Section 5.1 for 

the cosine-shaped nozzle. Outside the nozzle, the transverse velocity components 

are set to zero (v = w = 0), and both the static pressure and the total tempera- 

ture are assumed uniform and equal to their freestream values. Along each 

streamwise mesh line n = const., 5 = const., the total pressure is assumed 

constant and equal to its value at the inflow plane. The velocity u and static 

temperature T then are computed from the known total pressure, total temperature, 

and static pressure, and density follows from the equation of state. The 

initial conditions at grid points in the cross sectional planes downstream of 

the nozzle exit plane simply are set equal to the conditions at the corresponding 
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points in the exit plane itself. 

Numerical results for turbulent flow are presented below in dimensionless 

form. The non-dimensionalization is as described at the end of subsection 6.1.1. 

6.2.2 Numerical Results 

The three-dimensional turbulent flow computation attained convergence 

in 500 time steps at maximum Courant numbers (based on the minimum transverse 

grid spacing) that ranged from 1400 to 6800. The computation took slightly less 

than one hour of CDC 7600 computer time, and yielded a final steady state value 

of 3.428 for the net thrust. 

Figure 6-15 displays the computed static pressure distribution along the 

interior surface of the nozzle wall and along the continuation of the wall grid 

line into the downstream mixing region. A similar distribution of pressure along 

the exterior surface of the nozzle wall is given in Fig. 6-16. Pressure co- 

efficients derived from the latter data are shown in Fig. 6-17, along with wind 

tunnel experimental data from pressure taps located along the boattail (Ref. 11). 

The qualitative character of the theoretical curve matches that of the data, but 

the two are in close quantitative agreement only near the aft end of the boattail. 

The theoretical prediction of the crossover point from negative to positive values 

of Cp lies somewhat downstream of the experimental crossover point, and the 

minimum value of Cp that occurs near the forward end of the boattail is lower in 

the experimental data. A similar quantitative discrepancy with data on the 

forward part of the boattail was found in an axisymmetric flow solution by inves- 

tigators at the Langley Research Center (according to Lawrence Putnam). In that 

solution, the jet mixing region was modeled as a cylindrical sting, and only the 

external flow was computed. Numerical experimentation showed that the theoreti- 

cal prediction could be brought into agreement with the data by moving the upper 

computational boundary (freestream boundary) farther away from the nozzle outer 

surface. In the present computation, that boundary is only about 1.3 nozzle 

exit radii above the forward end of the boattail, whereas the corresponding dis- 

tance is 2.3 exit radii at the aft end of the boattail where the theory and 

experiment agree closely. This suggests that the disagreement in the forward 

region could be eliminated by shifting the freestream boundary outward a dis- 

tance of about one exit radius. 
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The computed flowfield shows that the external boundary layer remains 

attached over the most of the boattail, although there is a small region of 

separated flow near the aft end; specifically, there is a slight flow reversal 

in the velocity profiles at the last two streamwise grid points on the boattail, 

as shown in Fig. 6-18. It should be noted that an earlier laminar flow compu- 

tation for the same geometry and operating conditions displayed massive 

separation over most of the boattail. 

In addition to the boattail pressure taps, the wind tunnel test data 

included total pressure probe surveys across several axial stations in the 

downstream jet mixing region (Ref. 13). Figure 6-19 shows a comparison of these 

data with the computed total pressure distributions along the radial grid lines 

that lie nearest the probe survey stations, normalized by the computed values 
at the outermost interior grid point. One can see that at each station the 

computed shear layer in the near wake of the nozzle wall is somewhat thinner 

than that measured experimentally. This suggests that the wake turbulence 

model described in Section 4 may tend to under-predict the magnitude of the 

turbulent eddy viscosity in such regions. 

One can also see from Fig. 6-19 that the computation apparently over- 

predicts the total pressure in the inner core of the jet. This is a result of 

the coarse grid employed in the region near the symmetry axis. It is anticipated 

that the agreement between predicted and experimental results would be improved 

substantially with the same number of grid points by using a less highly 

stretched radial grid (the grid spacing at the symmetry axis is a factor of 

5000 greater at the axis than at the interior nozzle wall in the present 

computation), and by shifting the freestream computational boundary outward by 

a distance of one nozzle exit radius. 
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